05 Самоорганизация частиц ультрадисперсного алмаза в условиях нагрева при высоких давлениях

© Г.С. Олейник, А.В. Котко

Институт проблем материаловедения им. И.Н. Францевича АН Украины, Киев E-mail: Oleynik@ipms.kiev.ua

В окончательной редакции 25 марта 2008 г.

Приведены результаты экспериментальных данных о формировании при высоких P и T в системе частиц ультрадисперсного алмаза детонационного синтеза монокристаллов размерами 50—80 nm декаэдрической и икосаэдрической огранки. Сделано заключение, что их формирование обусловлено ориентированной ассоциацией исходных наночастиц, движущей силой которой является стремление системы к минимуму поверхностной энергии, и предопределяется кристалломорфологией наночастиц, имеющих правильную полиэдрическую огранку и морфологически плоские поверхности огранки.

PACS: 61.46.Hk, 81.05.Uw, 81.07.Bc

Самоорганизация с упорядоченной ассоциацией наночастиц — это широко распространенное явление в коллоидных растворах, биологических объектах, полимерах, в системах квантовых точек в процессе выращивания полупроводниковых гетероструктур и др. Вследствие такого процесса возникают упорядоченные образования, для которых во многих случаях характерны элементы симметрии [1–5]. Имеются данные, указывающие на развитие самоорганизации в монофазных системах частиц алмаза. На примере алмаза с размерами частиц $\leq 1 \mu$ m выявлено образование агрегатов, имеющих огранку тетраэдра, т.е. с появлением элементов симметрии третьего порядка [6]. В [7] указано, что в системе частиц ультрадисперсного алмаза (УДА), получаемого в ударных волнах из продуктов разложения взрывчатых веществ, могут формироваться кристаллы размерами в несколько десятков μ m, имеющие огранку правильного додекаэдра. Известны также данные о формировании в таком порошке при отжиге в вакууме [8] и водо-

55

роде [9] кристаллов правильной огранки. О самоорганизации частиц нанодисперсного алмаза в СВЧ-неравновесной плазме низкого давления сообщалось также в работе [10].

В данной работе приведены данные о формировании в монофазной системе хаотически ориентированных частиц УДА в условиях воздействия высоких давлений (*P*) и температур монокристальных образований декаэдрической и икосаэдрической огранок. Известно [11–13], что такие кристаллы огранены плоскостями (111) и имеют оси пятого порядка. Для алмаза кристаллы такой огранки формируются только при газофазном синтезе, когда имеет место поатомный свободный рост [14].

В данной работе для исследований использовали порошок УДА фирмы АЛИТ [15]. Он был получен после обработки исходной алмазной шихты в смеси кислот, содержащей хромовую кислоту. При таком способе очистки проходит полное удаление неалмазного углерода [16]. Содержание несгораемого остатка в порошках указанной фирмы не превышает 1.3-2 mass.%; в нем идентифицированы такие элементы — Са, AL, Cr, Si, B. Обработку порошка проводили в камере высокого давления в условиях квазигидростатического сжатия при P = 7.7 GPa в интервале температур $1200 - 2300^{\circ}$ С при длительности нагружения не более 60-120 s.

Структурные исследования порошка алмаза и компактных образцов на его основе, полученных при P-T-обработке, осуществляли на просвечивающем электронном микроскопе (JEM-100CX) с использованием методики темного поля. Изучение компактных образцов проводили по тонким фольгам, приготовленным методом ионного распыления. Картины темнопольных изображений получали в отрезках сплошных отражений 111 алмаза, наблюдаемых на микроэлектронограммах (МЭГ) от системы частиц (рис. 1). Это позволило визуализировать монокристальные частицы как в порошке, так и в компактных образцах. Идентификацию огранки частиц проводили, основываясь на данных исследований и моделирования профилей ГЦК-кристаллов различной огранки [11,12].

Фазовый состав порошка исследовали методами рентгеновского анализа и микродифракции (получали МЭГ от участков площадью не более $0.5 \,\mu m^2$). В случае компактных образцов идентификацию фазового состава методом микродифракции проводили только в микрообъемах, содержащих крупные частицы икосаэдрической и дэкаэдрической огранки, находящиеся в окружении более мелких; от крупных частиц на

Рис. 1. Электронно-микроскопическое изображение частиц исходного порошка УДА (общий вид, стрелками указаны кристаллы с двойниками) и типичная микроэлектронограмма.

МЭГ выявлялись точечные отражения, расположенные на дебаевских кольцах 111_{*a*}. Именно в этих отражениях и получали темнопольные изображения указанных крупных частиц, что являлось непосредственным подтверждением их монокристальности.

Рентгеновскими и микродифракционными исследованиями установлено, что в исходном порошке УДА содержался только кубический алмаз. На дифрактограммах порошка наблюдалось гало в области $2\theta \approx 17^{\circ}$. Наличие такого отражения по данным детального анализа авторов [9,17] указывает на присутствие на поверхностях огранки частиц углерода с sp^2 -гибридизаций, толщина его слоев составляет ~ 4–10 Å. Наши и исследования показали, что методом микродифракции такой углерод не идентифицируется.

Электронно-микроскопическими исследованиями обнаружено, что порошок составлен монокристальными частицами размерами 1–7 nm. Встречаются также частицы бо́льших размеров, вплоть до 20 nm. Частицы на электронно-микроскопических изображениях имели преимущественно правильную и (или) искаженную формы трех-, четырехугольника, редко пяти- и шестиугольника; часто многогранники имели

Рис. 2. Изображение кристаллов-зерен в образце, сформированном при $T = 2000^{\circ}$ С, P = 7.7 GPa: a — общий вид; b — единичное зерно с внутренними границами раздела.

несколько скругленные вершины (рис. 1). Согласно данным [11,12], наблюдение таких изображений позволяет заключить, что частицы в порошке являются тетраэдрами, прямоугольными призмами и октаэдрами или кубооктаэдрами, декаэдрами и икосаэдрами соответственно. Основной составляющей являлись частицы трех- и четырехугольного профилей. Частицы размерами более 7 nm имели всегда хорошо выраженную правильную огранку или же представляли собой сростки единичных частиц; в наиболее крупных из них выявлялись двойники по пересекающимся плоскостям (111). Это было установлено по анализу дифракционного контраста на частицах в виде правильных тетраэдров; плоскости двойникования в таких частицах были параллельны поверхностям огранки (111), см. рис. 1.

На МЭГ от исследованных микроучастков компактных образцов были только отражения алмаза. В образцах, полученных в интервале температур спекания от 1200 и до 2300°С, наблюдали такую последовательность превращений в системе частиц УДА. Вначале появлялись плотные агрегаты слабо разориентированных между собой частиц, затем агрегаты с выявляемыми границами сопряжения частиц по плоским поверхностям огранки (рис. 2) и, наконец, монокристальные частицы, имеющие профили от трех- до шестиугольника как правильной, так и

Рис. 3. Зеренная микроструктура образца, сформированного при $T = 2200^{\circ}$ С, P = 7.7 GPa: a — общий вид (белыми стрелками указаны отдельные кристаллы пятиугольного профиля, а черными — шестиугольного профиля); b, c — увеличенные изображения отдельных зерен шести- и пятиугольного профилей соответственно.

искаженной форм. При $T = 2300^{\circ}$ С образуются преимущественно частицы четырех-, пяти- и шестиугольного профилей размерами 50-80 nm (рис. 3). Доля таких частиц составляет примерно 20-25% по объему образцов.

Из полученных данных следует, что независимые частицы в исходном УДА представляют собой объемные нанокристаллы правильного габитуса. Образование на их основе монокристаллов указанных выше огранок указывает на то, что в условиях P-T-воздействия имеет место упорядоченная сборка исходных частиц, т. е. реализуется процесс самоорганизации. Правильная огранка образующихся кристаллов позволяет предполагать, что их формирование проходит качественно подобно механизму поатомного роста; при этом элементами роста являются исходные независимые наночастицы. По представлениям [13], подобная сборка может проходить при образовании кластеров из газовой фазы.

Образующиеся при T <> 2200°C монокристаллы имеют четкие вершины и морфологически плоские поверхности огранки (рис. 3). Это позволяет заключить, что их формирование осуществляется без участия диффузионного массопереноса. Сборка наночастиц, предшествующая формированию таких монокристаллов, осуществляется в динамических условиях, когда под действием внешней нагрузки в системе частиц проходят такие элементарные превращения, как перемещение независимых частиц, их сближение, формирование контактов между ними, разрушение контактов и возникновение новых. Появление когерентных границ по морфологически плоским поверхностям частиц и определяет формирование монокристаллов правильного габитуса. Такая огранка кристаллов может быть свидетельством того, что при их формировании проходит отбор контактирующих частиц и плоскостей их срастания, т.е. работает своеобразный механизм распознавания, определяющий ориентационное срастание (или гомоэпитаксию) независимых частиц. Обнаруженная тенденция к увеличению доли кристаллов с огранкой плотноупакованными плоскостями (111) указывает на то, что формируются контакты как по одноименным плоскостям (111), так и по плоскостям (110) и (100). Одноименные контакты наиболее выгодны для срастания, их образование при сочетании с двумя другими плоскостями является также термодинамически оправданным, поскольку наименьший химический потенциал для поверхностных состояний характерен для плоскостей неплотной упаковки, содержащих наибольшее количество свободных связей. Для кубических ГЦК-кристаллов грань (111) содержит три таких связи, (001) — четыре, а (110) — пять. Эти же грани отличаются также величиной поверхностной энергии. Для алмаза по [18] эти величины составляют (в J/m²): (111) — 5.3; (110) — 6.5; (100) - 9.2.

Ориентационное взаимодействие частиц алмаза, содержащих поверхностные слои неалмазного углерода, представляется возможным, поскольку известно, что передача структурной информации вещества может проходить через слои других веществ. Примером этого является упорядоченная сборка наночастиц с взаимной ориентацией их кристаллических решеток в коллоидных растворах, где взаимодействие частиц осуществляется через инородные прослойки [1,2]. В дальнейшем в условиях P-T-обработки неалмазный углерод, находящийся в поверхностях сопряжения наночастиц УДА, будет превращаться в алмаз. Возможно действие следующего механизма, обусловленного

особенностями строения наночастиц. Частица алмаза с поверхностным слоем неалмазного углерода представляет собой фактически фрагмент сверхрешетки, составляющие которой отличаются шириной запрещенной зоны: для УДА ее величина составляет 3.5 eV [19], а для углерода с *s p*²-гибридизацией — равна нулю [20]. Основываясь на данных работы [21], можно предположить, что превращение неалмазного углерода в алмаз (в поверхностях контактирования наночастиц) будет осуществляться под действием одномерного периодического потенциала, возникающего в результате чередования слоев веществ с различной величиной ширины запрещенной зоны. Этот процесс в агрегатах частиц с поверхностями сопряжения по плоским поверхностям огранки, безусловно, будет активироваться действием высоких давления и температуры, что способствует прежде всего формированию высокоплотных контактов между частицами. В [21] превращение неалмазного углерода в алмаз установлено при отжиге сверхрешеток карбид кремния-углерод.

В целом ориентированная (упорядоченная) сборка частиц УДА это релаксационный процесс, направленный на уменьшение свободной энергии системы. Формирование кристаллов, ограненных плотноупакованными плоскостями (что характерно для декаэдров и икосаэдров), обеспечивает в наибольшей степени снижение поверхностной энергии.

Список литературы

- [1] Ролдугин В.И. // УХ. 2000. Т. 69. № 10. С. 916–923.
- [2] Суздалев И.П., Суздалев П.И. // УХ. 2001. Т. 70. № 3. С. 203–240.
- [3] Ролдугин В.И. // УХ. 2004. Т. 73. № 2. С. 123–156.
- [4] Dujardin E., Mann S. // Adv. Mater. 2002. V. 14. N 11. P. 775-788.
- [5] Леденцов Н.Н., Устинов В.М., Щукин В.А. и др. // ФТП. 1998. Т. 32. В. 4. С. 385–410.
- [6] Резник Б.И., Суранов А.В., Кардасевич В.С. и др. // ЖТФ. 1989. Т. 59. В. 11. С. 191–194.
- [7] Кулакова И.И. // ФТТ. 2004. Т. 46. В. 4. С. 621–628.
- [8] Сенють В.Т. // Сверхтвердые материалы. 2002. № 6. С. 68-78.
- [9] Алексенский А.Е., Байдакова М.В., Вуль А.Я. и др. // ФТТ. 2000. Т. 42. В. 8. С. 1531–1534.
- [10] Яфаров Р.К. // ЖТФ. 2007. Т. 77. В. 1. С. 79-84.
- [11] *Непийко С.А.* Физические свойства малых металлических частиц. Киев: Наук. думка, 1985. 245 с.

- [12] Montejano-Carrizales J.V., Rodriguez-Lopez, Guttierrez-Wing C., Miki-Yoshide M., Jose-Yacaman M. // Encyclopedia of Nanoscience and Nanotechnology. 2004. V. 2. P. 237–282.
- [13] Петров Ю.И. Физика малых частиц. М.: Наука, 1982. 360 с.
- [14] Matsumoto S., Matsui Y. // J. Mater. Sci. 1983. V. 18. P. 1785-1793.
- [15] Новиков Н.В., Богатырева Г.П., Волошин М.Н. // ФТТ. 2004. Т. 46. В. 4. С. 585–591.
- [16] Богатырева Г.П., Волошин М.Н. // Сверхтвердые материлы. 1998. № 4. С. 82–87.
- [17] Алексенский А.Е., Байдакова М.В., Вуль А.Я., Сиклицкий В.И. // ФТТ. 1999.
 Т. 41. В. 4. С. 740–748.
- [18] Новиков Н.В., Федосеев Д.В., Шульженко А.А., Богатырева Г.П. Синтез алмазов. Киев: Наук. думка, 1987. 160 с.
- [19] Алексенский А.Е., Осипов В.Ю., Вуль А.Я. и др. // ФТТ. 2001. Т. 43. В. 1. С. 140–148.
- [20] Зиатдинов А.М. // Российский химический журнал. 2004. Т. 48. № 5. С. 5-11.
- [21] Заварицкая Т.Н., Караванский В.А., Мельник Н.Н., Пудонин Ф.А. // Письма в ЖЭТФ. 2004. Т. 79. № 6. С. 340–343.