04;10 Энергетический спектр многокомпонентного потока ускоренных ионов

© В.Л. Паперный, А.А. Черных, В.А. Шкляев

Иркутский государственный университет E-mail: paperny@math.isu.runnet.ru Институт сильноточной электроники СО РАН, Томск

Поступило в Редакцию 23 апреля 2007 г.

Экспериментально исследовался энергетический спектр движущегося в дрейфовом промежутке ускоренного ионного пучка, сепарированного сеточной системой из потока металлической плазмы импульсного сильноточного вакуумнодугового источника. Показано, что средняя энергия на единицу заряда ионов пучка ниже ускоряющего напряжения, а ширина спектра ускоренных ионов близка к их средней энергии и существенно превышает ширину спектра исходного пучка. Модельные расчеты показали, что наблюдаемый эффект можно объяснить действием нестационарного электрического поля объемного заряда ионного пучка, транспортируемого в дрейфовом промежутке.

PACS: 52.80.Vp

Источники высокоэнергетичных пучков ионов металлов на основе вакуумно-дуговых разрядов широко используются для различных приложений [1]. Ионный пучок сепарируется из генерируемого дугой плазменного потока и ускоряется до необходимой энергии с помощью сеточной электродной системы, а затем транспортируется в дрейфовом эквипотенциальном промежутке. Для ряда приложений необходима информация об энергетическом спектре ионного пучка, прошедшего дрейфовый промежуток, в частности, о ширине спектра, соответствии средней энергии ионов ускоряющему напряжению и др. В данной работе проведены прямые измерения энергетического спектра интенсивного ионного пучка, сепарированного из плазмы сильноточного импульсного вакуумно-дугового разряда.

Эксперимент проводился в ионном ускорителе типа MEVVA [1]. Электродная система состояла из титанового цилиндрического катода

46

47

диаметром 6 mm и кольцевого анода с диаметром отверстия 13 mm, расположенного на расстоянии 9 mm от торца катода. Вакуумная камера откачивалась до остаточного давления (4-6) · 10⁻⁶ Тогг. Разряд инициировался на торцевой поверхности катода с помощью высоковольтного пробоя по поверхности диэлектрической вставки между катодом и поджигающим электродом. Длительность разрядного импульса, поддерживаемого низкоомной формирующей линией, равнялась 200 µs, амплитуда разрядного тока I_d , измеряемого поясом Роговского в цепи катода, составляла около 100 А. Плазменная струя эмитировалась с поверхности катода, проходила в отверстие анода и расширялась в анодную полость, закрытую сеткой. Между выходной анодной сеткой и находящейся на расстоянии 15 mm от нее ускоряющей сеткой, находящейся под потенциалом заземленной вакуумной камеры, прикладывалось напряжение U_{acc}. Для подавления вторичной электронной эмиссии, между ускоряющей и анодной сетками помещалась дополнительная сетка, на которую подавалось запирающее вторичные электроны напряжение $(-1 \, \text{kV} \, \text{относительно ускоряющей сетки}).$

Ионный пучок диаметром около 10 ст, эмитированный ускоряющей сеткой, расширялся в эквипотенциальную дрейфовую камеру диаметром 20 ст и длиной 30 ст. Плотность ионного тока контролировалась подвижным плоским ленгмюровским зондом в режиме насыщения и, как показали измерения, составляла 22 mA/cm² на расстоянии l = 2 ст от ускоряющей сетки и 0.28 mA/cm² при l = 30 ст. В камере на расстоянии D = 20 ст от ускоряющей сетки располагался электростатический ионный энергоанализатор, входное отверстие которого было ориентировано навстречу потоку. Энергетическое разрешение анализатора составляло $\Delta \varepsilon / \varepsilon \approx 0.1$.

На рис. 1 приведены типичные осциллограммы разрядного тока, а также сигналов с выхода энергоанализатора, полученных в отсутствие ускоряющего напряжения $U_{acc} = 0$ и при $U_{acc} = 2$ kV. Энергия регистрируемых ионов $\varepsilon/Z = \sigma e U_d$ задавалась напряжением на пластинах анализатора U_d и геометрическим фактором $\sigma \approx 1.42$, определяемым конструкцией и размерами электродной системы анализатора. Из осциллограммы видно, что сигнал анализатора имеет явно выраженный пик в начале разряда, который приблизительно через 50 μ s релаксирует к плато. Отсюда следует, что плотность ионов во фронте пучка существенно выше, чем в основной части. Отметим также, что при наличии ускоряющего напряжения увеличивается отношение амплитуды пика к уровню плато.

Рис. 1. Осциллограммы: a — разрядного тока; b — сигнала с выхода энергоанализатора в отсутствие ускоряющего напряжения $U_{acc} = 0$, регистрируемая энергия ионов $\varepsilon/Z = 50 \text{ eV}$; c — сигнала с выхода энергоанализатора при наличии ускоряющего напряжения $U_{acc} = 2 \text{ kV}$, $\varepsilon/Z = 1500 \text{ eV}$.

Для построения энергетического спектра ионов, при заданной величине ε/Z фиксировался уровень сигнала на осциллограмме в некоторый момент времени. Чтобы получить статистически обоснованный результат, эта величина усреднялась по 10 выстрелам при неизменных параметрах разряда, таким образом находилась точка в спектре для этого значения ε/Z . Затем процедура повторялась при

Рис. 2. Энергетические спектры ионов пучка в отсутствие ускоряющего напряжения для временного сечения пучка t_1 (см. рис. 1) и при наличии ускоряющего напряжения для временного сечения t_2 .

другой энергии регистрируемых ионов, и таким способом строились энергетические спектры ионов в данном временном сечении ионного пучка. Отметим, что описанным образом при фиксированной величине ε/Z регистрируются ионы из разных областей пучка, оказавшиеся в этот момент на входе анализатора, причем, поскольку данная методика не позволяет разрешить различные зарядовые ионные компоненты, все они дают вклад в полученный спектр.

На рис. 2 изображены энергетические спектры исходного ионного пучка ($U_{acc} = 0$) и ускоренных ионов при $U_{acc} = 2$ kV, построенные для моментов времени t_1 и t_2 , соответствующих амплитудным значениям сигнала анализатора (рис. 1). Как видно из рис. 2, максимум энергетического спектра ускоренных ионов соответствует приблизительно 1.5 kV, что ниже величины ускоряющего напряжения U_{acc} . Отметим также, что дисперсия энергий ускоренных ионов значительно возросла по сравнению с дисперсией в исходном пучке, так что ширина (на полувысоте) энергетического спектра стала сопоставима со средней энергией ускоренных ионов.

Рис. 3. Расчетный энергетический спектр сепарированного пучка ионов импульсной вакуумной дуги с титановым катодом, ускоренных напряжением $U_{acc} = 2 \text{ kV}$, после прохождения дрейфового промежутка D = 20 cm.

Известно, что при движении в эквипотенциальном дрейфовом промежутке сепарированного интенсивного ионного потока его параметры существенно изменяются. Так, в работах [2,3], в аналогичных нашим экспериментальных условиях, было обнаружено уменьшение среднего заряда пучка многозарядных ионов металлов при его движении в дрейфовом промежутке. В качестве причины наблюдаемого эффекта было предложено действие электрического поля объемного заряда ионов пучка, которое отражает частицы с высокой зарядностью в сторону эмитирующей сетки [3]. Как показано в работе [4], действие объемного заряда на зарядовый состав ионов пучка становится существенным при плотности тока пучка, превышающей некоторое пороговое значение j_{cr} , составляющее для наших условий около 10μ A/cm². Поскольку эта величина существенно ниже наблюдаемых плотностей ионного тока, в данных экспериментах также следует ожидать заметного влияния поля объемного заряда на параметры пучка.

Пусть в некоторый момент времени в дрейфовый промежуток входит пучок ускоренных ионов, содержащий компоненты различной зарядности: Z = +1, 2, 3 в соответствии со стандартным составом плазмы, генерируемой вакуумно-дуговым разрядом с титановым като-

дом [5]. Ионная компонента с зарядом Z, пройдя ускоряющее напряжение U_{acc} , на входе в дрейфовый промежуток имеет начальную энергию $\varepsilon_Z^{(0)} = eZU_{acc}$. Сигнал анализатора, находящегося на расстоянии D от точки входа, в некоторый момент времени t_2 содержит все компоненты, оказавшиеся в этот момент на входе в анализатор. Однако, чтобы к этому моменту достичь анализатора, однозарядные ионы, имеющие минимальную начальную скорость, должны стартовать раньше ионов с большей кратностью заряда, имеющих большие начальные скорости. Эти однозарядные ионы из фронта пучка движутся в дрейфовом промежутке, где еще отсутствует объемный заряд. При движении от точки старта до точки регистрации они ускоряются полем E_s объемного заряда ионов основной части пучка, так что энергия однозарядных ионов ε_1 увеличивается и становится больше начальной: $\varepsilon_1 > \varepsilon_1^{(0)} = eU_{acc}$.

Поскольку в данном случае основной компонентой (около 70%) являются ионы с Z = +2 [5] и поле объемного заряда E_s определяется именно этой компонентой, то при движении в собственном поле эти ионы либо сохраняют начальную энергию, либо (в зависимости от параметров задачи: плотности пучка, ускоряющего напряжения и др.) тормозятся полем, т.е. $\varepsilon_2 \leq \varepsilon_2^{(0)} = 2eU_{acc}$. Наконец, регистрируемые в момент t_2 ионы с Z = +3, имеющие на входе в дрейфовый промежуток максимальную скорость, стартуют позже остальных и движутся в существенно влияющем на них (из-за большего заряда) тормозящем поле E_s . Поэтому их энергия на входе в анализатор оказывается меньше начальной: $\varepsilon_3 < \varepsilon_3^{(0)} = 3eU_{acc}$.

Для проверки этих качественных расуждений было проведено численное моделирование процесса транспортировки пучка, состоящего из одно-, двух- и трехзарядных ионов, в эквипотенциальном дрейфовом промежутке с использованием одномерного электростатического PIC-кода Tracks [6]. При моделировании предполагалось, что моноэнергетичный пучок ионов ускоряется напряжением $U_{acc} = 2 \text{ kV}$ и инжектируется в дрейфовый промежуток длиной L = 30 cm. В начале промежутка все ионные компоненты имеют энергию, соответствующую ускоряющему напряжению: $\varepsilon_Z^{(0)}/Z = eU_{acc}$. Плотность ионного тока задавалась существенно превышающей пороговую величину j_{cr} . Время расчета ограничивалось временем формирования виртуального анода в области транспортировки. Энергетический спектр ионов пучка восстанавливался на расстоянии D = 20 cm от плоскости инжекции.

Моделирование показало, что энергетический спектр ионов, прошедших расстояние D в дрейфовом промежутке, действительно отличается от первоначального. Как видно из рис. 3, в спектре присутствуют как высокоэнергичные однозарядные ионы с $\varepsilon_1/Z > eU_{acc}$, так и низкоэнергичные трехзарядные ионы, для которых $\varepsilon_3/Z < eU_{acc}$, вследствие чего ширина суммарного энегетического спектра ионов существенно увеличилась по сравнению с первоначальной. Результаты численного моделирования согласуются с проведенным качественным анализом и не противоречат экспериментальным данным. Таким образом, экспериментально обнаруженное в данной работе значительное уширение энергетического спектра сепарированного и ускоренного сеточной системой многокомпонентного ионного пучка можно объяснить действием объемного заряда ионов при движении пучка в дрейфовом промежутке.

Список литературы

- [1] Brown I.G., Oks E.M. // IEEE Trans. on Plasma Sci. 1997. V. 25. N 6. P. 1222– 1228.
- [2] Humphries Jr., Rutkowsky H. // J. Appl. Phys. 1990. V. 67. P. 3223.
- [3] Oks E., Yushkov G., Litovko I. et al. // Rev. Sci. Instrum. 2002. V. 73. N 2. P. 735–737.
- [4] Шкляев В.А., Беломытцев С.Я., Рыжов В.В. // Письма в ЖТФ. 2005. Т. 31.
 В. 10. С. 64–69.
- [5] Anders A., Yushkov G.Y. // J. Appl. Phys. 2002. V. 91. N 8. P. 4824-4832.
- [6] Шкляев В.А., Беломытцев С.Я., Рыжов В.В., Турчановский И.Ю. // Письма в ЖТФ. 2003. Т. 29. В. 14. С. 1–7.