05 О механизмах увеличения износостойкости композитов на основе политетрафторэтилена, допированного фуллереновой сажей

© Б.М. Гинзбург, Д.Г. Точильников, Ш. Туйчиев, А.А. Шепелевский

Институт проблем машиноведения РАН, Санкт-Петербург, Россия Таджикский государственный национальный университет Душанбе, Республика Таджикистан E-mail: ginzburg@tribol.ipme.ru

Поступило в Редакцию 26 марта 2007 г.

Исследовано влияние малых добавок фуллереновой сажи (СФ) на линейную интенсивность изнашивания I_h политетрафторэтилена (ПТФЭ) при трении скольжения по стали и смазывании водой. Введение всего 1% СФ вызывает резкое уменьшение I_h . Методами малоугловой и широкоугловой рентгенографии исследованы образцы СФ. Показано, что в СФ имеются кристаллиты фуллерена C_{60} и графита размером 20-25 nm, а также частицы размером 2-3 nm. Наличие частиц наноскопических размеров, по-видимому, придает образцам (ПТФЭ+СФ) свойства нанокомпозитов. Рассматривается механизм залечивания микротрещин в ПТФЭ, если наночастицы состоят из фрагментов фуллерена.

PACS: 82.60.Lf

Политетрафторэтилен (ПТФЭ) обладает превосходными антифрикционными свойствами, но при этом проявляет низкую износостойкость как при сухом трении, так и при трении со смазкой. Для повышения его износостойкости в него обычно вводят различные наполнители [1]. При этом получают выигрыш в износостойкости, но проигрывают в коэффициенте трения. Один из наиболее распространенных и используемых материалов на основе ПТФЭ — композит Ф-4К20 [2] — содержит 80% ПТФЭ марки Ф-4 (ГОСТ 10007-80, Россия) и 20% каменноугольного кокса. Эта композиция обладает высокой износостойкостью, малой деформируемостью под нагрузкой и малой гигроскопичностью. Основ-

88

ным недостатком Φ -4K20 является сравнительно высокий коэффициент трения (в 2–3 раза выше, чем у Φ -4).

Как будет показано ниже, введение небольшого количества фуллереновой сажи (СФ) в Ф-4 приводит к получению антифрикционного полимерного материала, сочетающего низкий коэффициент трения Ф-4 и высокую износостойкость Ф-4К20.

Использовали СФ, выпускаемую Научно-производственной компанией "НеоТекПродакт" (С.-Петербург, Россия) [3]. СФ вводили в материал Ф-4 в количестве 1, 3, 5 или 10% в соответствии с техническими условиями получения Ф-4К20 [2].

Трибологические испытания проводили на стандартной роликовой машине трения 2070 СМТ-1 по методике, разработанной ранее [4]. Испытуемые образцы представляли собой плоские, прямоугольного сечения пластины толщиной 10 mm. В качестве контртела использовали ролик из стали марки 18Х2Н4МА (ГОСТ 4543-71), вращающийся с частотой 400 min⁻¹, что соответствовало линейной скорости скольжения 1 m/s. Рабочая цилиндрическая поверхность ролика шириной 16 mm имела шероховатость $R_a = 0.65 \,\mu$ m и во время испытаний на 6 mm была погружена в водяную ванну, так что имело место граничное трение скольжения при смазывании водой.

На поверхности образца предварительно вырабатывали канавку износа площадью $30-50 \text{ mm}^2$, так что далее испытания проводили на конформных контртелах с приработанным фрикционным контактом. На образец подавали последовательно увеличивающиеся нормальные нагрузки F_N . Продолжительность испытаний на каждой нагрузке составляла 300 s. Определяли значения коэффициентов трения f_c и линейных интенсивностей изнашивания I_h . По каждому варианту проводилось от 3 до 6 испытаний. Значения трибологических показателей определялись как средние арифметические. Относительные среднеквадратичные ошибки лежали в пределах 5-10%.

Во всех рентгенографических измерениях использовали CuK_{α} -излучение, фильтрованное Ni. Исследования методом широкоугловой рентгенографии проводили на дифрактометре ДРОН-2 с графитовым кристаллом-монохроматором, используя схему Брегга—Брентано. Из сажи прессованием готовили образцы в виде таблеток толщиной ~ 2 mm. По измеренным значениям ширины рефлексов оценивали средние размеры кристаллитов по формуле Шеррера [5].

Измерения методом малоуглового рассеяния рентгеновских лучей проводили на установке КРМ-1 со щелевой коллимацией первичного

пучка рентгеновского излучения; ширина пучка составляла 5' у основания контура. Диапазон исследованных углов рассеяния простирался от 12' до 2°. В качестве подложки использовали гидратцеллюлозную пленку толщиной 7.5–10 µm, на поверхность которой наносили тонкий слой силикатного клея, после чего поверхность более или менее равномерно посыпали тонким слоем исследуемого порошка сажи и раскатывали порошок стеклянным валиком. Контрольная подложка вместе с тонким слоем клея практически не давала заметного рассеяния в измеряемом интервале углов рассеяния по сравнению с фоном. Измерения проводили по методике "на просвет": образец устанавливали в центре гониометра перпендикулярно первичному пучку и снимали кривую рассеяния $I_s(2\theta)$; затем образец помещали перед первой щелью и снимали контур первичного пучка с учетом его поглощения образцом $I_a(2\theta)$. Для всех образцов кривые $I_a(2\theta)$ были одинаковы в пределах ошибок измерений, так что нормировку к одинаковой интенсивности первичного пучка не проводили. Далее из кривой $I_s(2\theta)$ вычитали кривую $I_a(2\theta)$; указанные "разностные" дифрактограммы представлены ниже в качестве экспериментальных кривых I(s) или $I(2\theta)$, где $s = 4\pi \sin(\theta)/\lambda$, 2θ — угол рассеяния, λ — длина волны рентгеновского излучения. Далее обработку кривых $I(2\theta)$ проводили по методике Гинье [6], перестраивая их в координатах логарифм интенсивности квадрат угла рассеяния. По тангенсу а угла наклона прямолинейных участков кривых в этих координатах определяли радиусы инерции рассеивающих элементов.

В диапазоне контактных давлений 1–10 МРа добавка СФ снижает величину линейной интенсивности изнашивания до значений $I_h = 0.4 \cdot 10^{-8} - 2.9 \cdot 10^{-8}$ (рис. 1), т. е в 2–7.5 раза. Примечательно, что наибольшие изменения наблюдаются уже при добавке 1% СФ — снижение более чем в 3 раза. По этому параметру композит (Ф-4 + 1% СФ) становится лучше, чем Ф-4К20, и при этом величина коэффициента трения также снижается в ~ 1.5 раза.

Широкоугловые рентгенограммы образцов Ф-4 с введенной СФ показывают, что структура фторопласта практически не меняется: все основные рефлексы, в пределах ошибок измерений, не меняют своего положения, интенсивности и формы. Очевидно, фуллереновая сажа находится в матрице Ф-4 в виде отдельной не смешивающейся на молекулярном уровне фазы. На рентгенограммах композиционных образцов, ввиду малых количеств сажи, слабо проявляется только рефлекс 002 от решетки графита, тогда как на широкоугловых рентгенограммах СФ,

Puc. 1. Зависимости линейной интенсивности изнашивания Φ -4 от контактного давления при трении скольжения по стали и смазывании водой: Φ -4 (1), Φ -4 + 1% C Φ (2), Φ -4 + 3% C Φ (3), Φ -4 + 5% C Φ (4), Φ -4 + 10% C Φ (5), Φ -4K20 (6).

кроме упомянутого рефлекса от решетки графита, наблюдается три рефлекса от решетки фуллерена C₆₀ (рис. 2). Размеры кристаллитов, рассчитанные по формуле Шеррера для кристаллитов фуллерена C₆₀ в фуллереновой саже, составляют $\sim 25\,\mathrm{nm}$ по ширине рефлекса 111 и $\sim 20\,\mathrm{nm}$ по ширине рефлекса 220. Размеры кристаллитов графита того же порядка.

На малоугловых рентгенограммах СФ, построенных в координатах Гинье (рис. 3), можно отчетливо выделить три прямолинейных отрезка, соответствующих радиусам инерции 10, 3 и 2 nm. Если соответствующие рассеивающие элементы моделировать однородными по плотности кубами, то их ребра будут вдвое больше — 20, 6 и 4 nm. Первый из этих размеров хорошо согласуется с размерами кристаллитов из широкоугловых измерений. Два других размера соответствуют, очевидно, осколкам кристаллитов. В случае осколков кристаллитов фуллерена С₆₀

Рис. 2. Широкоугловая дифрактограмма фуллереновой сажи СФ. СиК_{*a*}-излучение. 111, 220 и 311 — рефлексы, соответствующие решетке С₆₀, а 002 — наиболее сильный рефлекс от решетки графита.

Рис. 3. Малоугловая рентгенограмма фуллереновой сажи СФ в координатах Гинье.

Рис. 4. Схема взаимодействия микротрещины и молекулы фуллерена С₆₀.

это кубы примерно из 27 $(3 \times 3 \times 3)$ или 64 $(4 \times 4 \times 4)$ элементарных ячеек (конгломераты из $\sim 100-250$ молекул).

В предыдущих работах [7,8] было исследовано влияние малых добавок фуллерена С₆₀ и фуллереновой сажи на трибологические свойства жидких минеральных масел. Был сделан вывод, что роль фуллерена сводится к инициированию процессов трибополимеризации нафтеновых и парафиновых олигомеров, содержащихся в минеральных маслах, и формированию защитной полимерной пленки на поверхностях трения. Однако механизмы увеличения противоизносных характеристик твердых смазочных материалов при введении в них малых добавок фуллереновой сажи, не смешивающейся с матрицей на молекулярном уровне, оставались неясными.

Проведенные в данной работе исследования показывают, что вводимая в ПТФЭ фуллереновая сажа содержит много частиц наноскопических размеров; если они не агломерируют в процессе переработки, то придают исследуемым образцам свойства нанокомпозитов, что может объяснять их упрочнение [9]. Дополнительное упрочнение может возникать вследствие высокой электроноакцепторной способности молекул C_{60} . Действительно, известно, что при механическом разрушении полимеров в устье образующихся микротрещин происходит механодеструкция полимерных цепей. Аналогичный процесс идет, очевидно, в устьях многочисленных микротрещин, приводящих к образованию частиц износа. На рис. 4 представлена схема продвижения микротрещины, достигающей молекулы C_{60} (или небольших конгламератов молекул C_{60}). На поверхности берегов микротрещины сосредоточены свободные полимерные радикалы. Часть из них, достигшая фуллере-

новой поверхности, образует с фуллереном ковалентные связи. При дальнейшем увеличении сил, раскрывающих трещину, эти связи разрываются, происходит втягивание молекулы (или агрегата молекул) C_{60} в микротрещину, сопровождающееся образованием большего количества новых ковалентных связей макрорадикалов с фуллереном, что приводит в конечном итоге к "залечиванию" микротрещины. Тем не менее следует отметить, что увеличение износостойкости (прочности) при трении не означает увеличения прочности при растяжении или сжатии, где процессы разрушения идут по несколько иным механизмам.

Работа выполнена в рамках научной программы № 14 фундаментальных исследований Отделения ЭММПУ РАН (координатор — акад. И.Г. Горячева), гранта РФФИ № 06-08-00910-а и проекта МНТЦ Т-1145.

Список литературы

- [1] Полимеры в узлах трения машин и приборов. Справочник / Ред. А.В. Чичинадзе. 2-е изд., перераб. и дополн. М.: Машиностроение, 1988. 328 с.
- [2] Ту-6-05-1412-76 на материал Ф-4К20.
- [3] Дюжев Г.А., Басаргин И.В., Филиппов Б.М., Алексеев Н.И., Афанасьев Д.В., Богданов А.А. Способ получения фуллеренсодержащей сажи и устройство для его осуществления. Патент РФ № 2234457 С2 МПК СО1 В 31/02. Приоритет 01.06.2001. БИ.20.08.2004.
- [4] Точильников Д.Г., Гинзбург Б.М. // Вопросы материаловедения. 2002. № 31 (3). С. 39–48.
- [5] Китайгородский А.И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. М.: Л.: Гостехтеоретиздат, 1952. 130 с.
- [6] Гинье А. Рентгенография кристаллов / Пер. с франц. под ред. Н.В. Белова. М.: Физматгиз, 1961. 604 с.
- [7] Гинзбург Б.М., Киреенко О.Ф., Байдакова М.Ф., Соловьев В.А. // ЖТФ. 1999.
 Т. 69. В. 11. С. 113–116.
- [8] Гинзбург Б.М., Байдакова М.В., Киреенко О.Ф., Точильников Д.Г., Шепелевский А.А. // ЖТФ. 2000. Т. 70. В. 12. С. 87–97.
- [9] Мошев В.В., Гаришин О.К. // Успехи механики. 2005. Т. З. № 2. С. 3-36.