02;0.6;06.1 Влияние нейтронного облучения на фотоэлектрические параметры структур *p*-*n*-InSe

© З.Д. Ковалюк, О.А. Политанская, П.Г. Литовченко, В.Ф. Ластовецкий, О.П. Литовченко, В.К. Дубовой, Л.А. Поливцев

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Черновицкое отделение E-mail: chimsp@ukrpost.ua Институт ядерных исследований НАН Украины, Киев

В окончательной редакции 27 марта 2007 г.

Исследовано влияние облучения быстрыми нейтронами реактора с эффективной энергией 1 MeV и флюенсами $\Phi = 1 \cdot 10^{14} - 5 \cdot 10^{15} \, \mathrm{n} \cdot \mathrm{cm}^{-2}$ на фотоэлектрические параметры гомопереходов p-n-InSe, изготовленных методом прямого оптического контакта полупроводников p- и n-типа. Наблюдаемые изменения ВАХ заключаются в улучшении коэффициента выпрямления тока и росте фактора идеальности ВАХ с увеличением дозы облучения. Отмечено отсутствие особых изменений спектральных зависимостей фоточувствительности структур при разных дозах облучения, что позволяет рекомендовать их для создания радиационно-стойких фотодетекторов.

PACS: 72.40.+w, 73.40.Lq, 78.70.-g

Введение. Актуальность изучения радиационного воздействия на слоистые анизотропные полупроводники группы А^{III}В^{VI} связана с отсутствием систематических исследований, которые позволяют прогнозировать электронные свойства, обосновывать физические модели и устанавливать закономерности функционирования физических объектов — полупроводниковых гетероструктур на основе слоистых кристаллов. В практическом плане использование таких структур чрезвычайно перспективно для создания высокоэффективных радиационно-стойких фотопреобразователей и детекторов ядерных излучений. Считается, что в сравнении с другими полупроводниками (Si, GaAs, GaP, InP и др.) слоистые кристаллы обладают повышенной стойкостью в жесткой

14

радиации (высокоэнергетические электроны и нейтроны, γ -излучение), поскольку существенное изменение электрофизических параметров материала или структур на их основе начинается при относительно высоких дозах облучения [1,2]. Более того, в определенном диапазоне доз облучения γ -квантами ⁶⁰Со наблюдается не только не потеря, но и увеличение фоточувствительности структур на основе InSe [3,4]. Фотоэлектрические параметры InSe-диодов при влиянии малых доз рентгеновского облучения улучшаются либо испытывают незначительные изменения [5,6].

Целью настоящей работы является исследование влияния облучения быстрыми реакторными нейтронами на фотоэлектрические характеристики гомопереходов (ГП) *p*-*n*-InSe.

Экспериментальные результаты и их обсуждение. Кристаллы InSe выращивались вертикальным методом Бриджмена. Концентрация носителей тока в них составляла ~ 10^{14} и ~ 10^{15} cm⁻³ для *p*- и *n*-типа проводимости соответственно. Фоточувствительные структуры изготавливались методом оптического контакта [7]. В качестве фронтального полупроводника использовались тонкие (~ $10-20\,\mu$ m) пластины *p*-InSe(Cd), в качестве базовой подложки — *n*-InSe толщиной ~ $100\,\mu$ m. Площадь исследуемых фотодиодов равнялась ~ $0.2 \, \text{cm}^2$. Для контактов использовался чистый индий.

Облучение ГП p-n-InSe проводили в горизонтальном канале ГК-6 ядерного реактора ВВР-М ИЯИ НАН Украины при плотности потока быстрых нейтронов $(2.2-2.4) \cdot 10^{10} \text{ n/cm}^2 \cdot \text{s}$ с эффективной энергией 1 MeV. Температура образцов при облучении не превышала 320 К.

В ходе работы исследовались вольт-амперные характеристики (ВАХ) и импеданс ГП p-n-InSe с помощью амплитудно-частотного анализатора Schlumberger SI 1255 & 1286. Спектры фоточувствительности исследовались с помощью монохроматора МДР-23 с разрешающей способностью 2.6 nm/mm при комнатной температуре. Спектральное распределение относительной квантовой эффективности фотопреобразования определялось отношением фототока к числу падающих фотонов.

Динамика изменений ВАХ с облучением представлена на рис. 1. Они имеют ярко выраженные диодные характеристики, причем наблюдается улучшение коэффициента выпрямления тока в зависимости от флюенса (см. таблицу).

Рис. 1. Прямые (*a*) и обратные (*b*) ветви ВАХ ГП *p*-*n*-InSe в зависимости от дозы облучения. Штриховые линии отвечают зависимости $J \sim c \exp[q(V - IR_s)/nkT]$. T = 293 K.

Начальные участки прямых J-V характеристик (рис. 1, *a*) можно описать известной экспоненциальной зависимостью $J = J_0 \times \times [\exp(qV/nkT) - 1]$. Однако при больших прямых смещениях (> 0.2 V)

Флюенс, $n \cdot cm^{-2}$	0	$1\cdot 10^{14}$	$1.1\cdot10^{15}$	$5\cdot 10^{15}$
V_{oc},V	0.46	0.41	0.4	0.34
$J_{sc}, \ \mu A/cm^2$	180	120	67	45
n	1.7	1.9	2	2.4
Коэффициент выпрямления	30	50	300	80
при $ V = 1$ V				
<i>W</i> , μm	2.6	2.7	3.7	3.9
$\delta_{1/2}$, meV	737	740	810	820

Влияние нейтронного облучения на параметры ГП *p*-*n*-InSe

Рис. 1 (продолжение).

экспериментальные точки не совпадают с этой зависимостью, что объясняется падением напряжения на последовательном сопротивлении подложки R_s . В нашем случае величина R_s находилась из измерений импеданса структур. Это позволило перестроить J-V характеристики как функции напряжения на барьерной части диода $V-IR_s$, а не приложенного напряжения V. Результаты такой перестройки экспериментальных данных приведены на рис. 1 штриховыми линиями. Учтенный спад напряжения на R_s заметно видоизменяет экспериментальные кривые. Теперь участок, который отвечает зависимости $J = J_0 \{ \exp[q(V - JR_s)/nkT] - 1 \}$, становится более протяженным.

Диодный коэффициент n (см. таблицу) определялся из соотношения $n = \frac{q}{kT} \frac{\Delta V}{\Delta \ln I}$. Для серии необлученных структур n составляет величину ~ 1.7 . Она отличается от идеального случая n = 1, что является следствием суперпозиции диодной и рекомбинационной компонент тока, но одновременно может быть вызвана присутствием в реальных

переходах шунтирующих токов, которые зависят от качества приготовления структур [8]. Величина *n* увеличивается до 1.9 и 2.0 для флюенсов $\Phi_1 = 1 \cdot 10^{14} \,\mathrm{n \cdot cm^{-2}}$ и $\Phi_2 = 1.1 \cdot 10^{15} \,\mathrm{n \cdot cm^{-2}}$ и до 2.4 для $\Phi_3 = 5 \cdot 10^{15} \,\mathrm{n \cdot cm^{-2}}$, что указывает на доминирование рекомбинационного и туннельно-рекомбинационного механизмов соответственно. Динамика изменения диодного коэффициента свидетельствует о росте рекомбинационной составляющей в механизме прохождения тока через барьер и определяется поверхностными свойствами границы раздела полупроводников, которые приводят к туннельно-рекомбинационным процессам на этой границе. Учет таких процессов может объяснить наблюдаемые значения *n*, которые превышают 2.

Обратные токи во всем диапазоне напряжений подчиняются закону $J \sim V^m$ (рис. 1, b). Для смещений V < -1 V показатель m существенно не изменяется с облучением и остается в пределах 0.9-1.2. При больших обратных смещениях показатель степени возрастает к $m \cong 1.5-3.3$. Такое поведение ВАХ нейтральных областей характерно для токов, ограниченных пространственным зарядом, и наблюдалось раньше для монокристаллов *n*-InSe [9]. Наблюдается общая тенденция незначительных изменений полевой зависимости обратных токов, связанная как с изменением последовательного сопротивления подложки, так и с ростом шунтирующих токов с облучением. Эти эффекты имеют разные знаки, поэтому для флюенса $\Phi = 1.1 \cdot 10^{15} \, {\rm n} \cdot {\rm cm}^{-2}$ и необлученной структуры обратные ветви ВАХ совпадают.

С помощью импеданса также изучалось поведение емкости *C* структур при нулевом смещении с облучением. В соответствии с выражением $W = \varepsilon \varepsilon_0 S/C$ находилась толщина обедненного слоя *W* (см. таблицу). Наблюдается тенденция роста этой величины с облучением. Нужно отметить, что практически вся область пространственного заряда (ОПЗ) локализуется в *p*-InSe. Это связано с разницей на порядок в концентрациях основных носителей используемых полупроводников.

ГП p-n-InSe обладают фоточувствительностью в широкой области спектра (рис. 2). Энергетическое положение длинноволнового края спектра $\eta(hv)$ при энергии фотонов $hv \ge 1.2 \text{ eV}$ соответствует ширине запрещенной зоны InSe. Дальнейший рост фоточувствительности для энергий hv > 1.2 eV связан с монотонным ростом коэффициента поглощения [10]. Собственный максимум фототока находится при энергии оптических квантов $hv \cong 1.6 \text{ eV}$. Спектрам также присущ нехарактерный коротковолновый спад в области энергий квантов света 2.0 eV,

19

Рис. 2. Спектральная зависимость относительной квантовой эффективности фотопреобразования η ГП p-n-InSe в зависимости от дозы облучения. T = 293 K.

вызванный относительно большой глубиной залегания p-n-перехода. Неизменность спектров $\eta(hv)$ свидетельствует об отсутствии деструктивного влияния на границу гомоперехода проникающего излучения. После облучения флюенсами $\Phi = 1.1 \cdot 10^{15} - 5 \cdot 10^{15} \,\mathrm{n \cdot cm^{-2}}$ наблюдается только расширение фоточувствительности в коротковолновую часть спектра.

Использованные в работе флюенсы облучения значительно выше предельно допустимых для традиционных фотодетекторов на основе кремния. Фоточувствительность последних в результате радиационного облучения нейтронами флюенсом $1.1 \cdot 10^{11} \text{ n} \cdot \text{cm}^{-2}$ уже уменьшается на 30% [11]. Для InGaAs p-i-n-фотодиодов при флюенсе $5 \cdot 10^{13} \text{ n} \cdot \text{cm}^{-2}$ фототок падает на 70% [12]. В нашем случае наблюдается уменьшение фототока ГП p-n-InSe для максимальных флюенсов на 58% при одновременном увеличении на 11% ширины спектров

фоточувствительности на их полувысоте $\delta_{1/2}$ (см. таблицу). Возможные причины такого поведения будут обсуждаться ниже.

Изменения фотоэлектрических показателей (см. таблицу) имеют свои особенности. Для максимальной дозы облучения происходит падение напряжения холостого хода V_{oc} на 26%, а тока короткого замыкания J_{sc} в 4 раза. Это обусловливается целым рядом причин: увеличением темновых токов насыщения, ухудшением диодного коэф-фициента и изменением последовательного сопротивления.

Полученные результаты можно свести к следующему. Известно [13], что нейтронное облучение кроме точечных дефектов формирует скопления точечных дефектов — кластеры радиационных дефектов, которые равномерно распределены по объему полупроводника (из-за значительной глубины проникновения нейтронов в материал) и являются эффективными центрами рекомбинации. К примеру, изменения электрических параметров GaSe с ростом дозы нейтронного облучения (флюенс 10¹¹-10¹⁴ n · cm⁻²) авторы связывают с возникновением нейтральных дефектов в прослойках или наличием дефектов структуры в исходном материале, способствующих образованию радиационных дефектов [14]. По нашему мнению, основное число возникающих дефектов представляет собой вакансии селена V_{Se} по причине особенностей слоистой структуры InSe, которая предусматривает более слабую связь халькогена в решетке. Это предположение согласуется с данными работы [15]. С облучением поведение уровня Ферми (соответственно и концентрации носителей тока), который в данном случае отражает квазиравновесное состояние системы "совокупность дефектов + носители заряда", в материалах *n*- и *p*-типа проводимости разное: специально легированный акцепторной примесью InSe представляет собой сильнокомпенсированный полупроводник в отличие от *n*-InSe [16]. Как следствие, этот фактор будет определять величину потенциального барьера в облученных образцах. Вводимые дефекты снижают величину времени жизни носителей заряда, что проявляется в практически одинаковом падении фоточувствительности ГП *p*-*n*-InSe во всем диапазоне энергий фотонов. Иными словами, влияние облучения быстрыми нейтронами сказывается в равной степени как при объемном, так и при поверхностном поглощении. Также известно, что, в отличие от гетероструктур, для *p*-*n*-гомопереходов кривая фоточувствительности определяется формой спектральной зависимости коэффициента собирания фотоносителей. При этом ширина спектра $\eta(hv)$ увеличива-

Заключение. Таким образом, при облучении ГП p-n-InSe быстрыми нейтронами реактора с эффективной энергией 1 MeV и флюенсами $\Phi = 1 \cdot 10^{14} - 5 \cdot 10^{15} \text{ n} \cdot \text{cm}^{-2}$ наблюдаются улучшение коэффициента выпрямления тока и рост фактора идеальности ВАХ при увеличении дозы облучения. Отмечается некоторое расширение формы спектрального распределения фототока при незначительном спаде фоточувствительности. Полученные результаты позволяют рекомендовать структуру p-n-InSe для изготовления радиационно-стойких фотодетекторов.

Список литературы

- [1] Аскеров К.А., Абасова А.З., Исаев Ф.К. // Прикладная физика. 2004. № 4. С. 94–96.
- [2] Абдулаев Г.Б., Абасова А.З., Горшков А.М. и др. // ФТП. 1981. Т. 15. С. 799–801.
- [3] Ковалюк З.Д., Катеринчук В.Н., Политанская О.А. и др. // Письма в ЖТФ. 2005. Т. 31. В. 9. С. 1–5.
- [4] Kovalyuk Z.D., Katerynchuk V.M., Mintyanskii I.V. et al. // Mater. Sci. Eng. B. 2005. V. 118. P. 147–149.
- [5] Ковалюк З.Д., Катеринчук В.Н., Политанская О.А. и др. // ФТП. 2006. Т. 40. В. 8. С. 940–943.
- [6] Kovalyuk Z.D., Katerynchuk V.M., Politanska O.A. et al. // Nuclear Instruments and Methods in Physics Research. 2006. V. B246. P. 118–121.
- [7] Бакуменко В.Л., Чишко В.Ф. // ФТП. 1977. Т. 11. В. 10. С. 2000-2002.
- [8] Манассон В.А., Малик А.И., Баранюк В.Б. // Письма в ЖТФ. 1981. Т. 7. В. 9. С. 549–552.
- [9] Абдинов А.Ш., Кязым-заде А.Г., Мехтиев Н.М. и др. // ФТП. 1976. Т. 10. В. 1. С. 76–80.
- [10] Зи С. Физика полупроводниковых приборов: В 2 кн. Кн. 2. М.: Мир, 1984.
- [11] Ohyama H., Simoen E., Claeys C. et al. // Physica E. 2003. V. 16. P. 533-538.

- [12] Ohyama H., Vanhellemont J., Takami Y. et al. // Radiation Physics and Chemistry. 1998. V. 53. P. 597–602.
- [13] Вавилов В.С., Кекелидзе Н.П., Смирнов Л.С. Действие излучений на полупроводники. М.: Наука, 1988.
- [14] Абдулаев Г.Б., Абасова А.З., Аскеров К.А. и др. // Неорганические материалы. 1983. Т. 19. В. 4. С. 679–681.
- [15] Абасова А.З., Заитов Ф.А. // ФТП. 1986. Т. 20. В. 4. С. 613–618.
- [16] Shigetomi S., Ohkubo H., Ikari T. // J. Phys. Chem. Sol. 1990. V. 51. N 1. P. 91–92.