11,10 Динамическая неоднородность коллоидного раствора вблизи золь-гель-перехода

© А.В. Мокшин, С.О. Забегаев, Р.М. Хуснутдинов

Казанский (Приволжский) федеральный университет, Казань, Россия

E-mail: anatolii.mokshin@mail.ru

(Поступила в Редакцию 7 июля 2010 г.)

Представлены результаты моделирования динамики частиц коллоидного раствора вблизи золь-гельперехода. На основе данных моделирования рассчитаны корреляционная функция Ван-Хова, некогерентная функция рассеяния и среднеквадратичное смещение частиц при различных значениях температуры и объемной плотности. С помощью параметра негауссовости выполнена численная оценка эффектов динамической неоднородности, а также определена температура геляции при различных плотностях. Показано, что особенности динамики частиц коллоидного раствора вблизи золь-гель-перехода объясняются условным разделением частиц системы на быстрые, дающие вклад в трансляционную диффузию, и медленные, участвующие преимущественно в колебательных процессах.

Работа поддержана РФФИ (гранты № 09-02-91053-НЦНИ-а, 08-02-00123а).

1. Введение

Важной особенностью коллоидных систем является их способность формировать устойчивую стекольную фазу при высоких плотностях, а также подверженность геляции при низких плотностях и достаточно сильном короткодействующем межчастичном притяжении [1]. В случае обратимой (физической) геляции в коллоидных дисперсиях образуются пространственно-разветвленные сетевые структуры, кластеры с малым координационным числом, полностью пронизывающие образец [2]. Наличие этих сложных связанных структур в гелях влияет непосредственно на особенности их микроскопической динамики: неэкспоненциальное релаксационное поведение временных корреляционных функций [3], эффекты старения [4], низкочастотные коллективные возбуждения [5] и др.

Следует отметить, что неэкспоненциальная релаксация была ранее обнаружена в переохлажденных жидкостях и стеклах на основе опытов по рассеянию света и медленных нейтронов [6], а также численных экспериментов по моделированию молекулярной динамики [7,8]. Ее появление связывалось с так называемой динамической неоднородностью, которая в соответствии с некоторыми предположениями могла возникать 1) вследствие негармонических колебаний частиц в пределах ближайшего окружения; 2) в случае, когда динамика отдельных локальных участков системы является различной; 3) из-за того, что различные динамические процессы характеризуются сопоставимыми временными масштабами. Несмотря на то, что ранее были предложены некоторые теоретические модели для объяснения и описания динамической неоднородности в переохлажденных жидкостях и стеклах [9-11], четкое понимание протекания физических процессов, приводящих к динамической неоднородности, до сих пор отсутствует [12].

В настоящей работе представлены результаты исследования особенностей динамики частиц коллоидного раствора при золь-гель-переходе. На основе моделирования динамики частиц анализируется влияние быстропротекающих и медленных процессов на эффекты динамической неоднородности.

2. Детали моделирования динамики частиц коллоидного раствора

Исследуемая система представляет собой бинарную смесь, состоящую из N = 10976 частиц, которые расположены в кубической ячейке с периодическими граничными условиями. Взаимодействие между частицами осуществлялось через парный сферический потенциал Дерягина–Ландау–Вервея–Овербэка (ДЛВО) [13]

$$V_{AB} = \varepsilon \left[C_1 \left(\frac{\sigma_{AB}}{r} \right)^{36} - C_2 \left(\frac{\sigma_{AB}}{r} \right)^6 + C_3 \frac{e^{-r/\xi}}{r/\xi} \right], \quad (1)$$

где $C_1 = 3.56$, $C_2 = 7.67$, $C_3 = 36.79$, $\xi = 0.49$, $\varepsilon = 1$ и $\sigma_{AB} = (\sigma_A + \sigma_B)/2$, $\sigma_A = 1$, а $\sigma_B = 0.8$ [14–16]. Вид потенциала представлен на рис. 1. На вставке к рисунку изображена мгновенная конфигурация частиц системы при температуре $T = 0.05\varepsilon/k_B$ и объемной плотности $\phi = \pi\sigma^3 N/6L^3 = 0.13$. Для удобства все величины будут измеряться в приведенных единицах: длины — в единицах σ , температура — в единицах $k_B T/\varepsilon$, время в единицах $\tau_0 = \sqrt{m\sigma^2/\varepsilon}$, где m — масса частицы, k_B — постоянная Больцмана. Для сокращения времени вычислений взаимодействие частиц на расстояниях, превышающих $r_c = 3.5\sigma$, не учитывалось [17].

Интегрирование уравнений движения частиц было выполнено с помощью алгоритма Верле́ в скоростной форме [18] с временны́м шагом $\Delta \tau = 0.01 \tau_0$. Моделиро-

Рис. 1. ДЛВО-потенциал межчастичного взаимодействия. I — энергия взаимодействия между частицами сорта A, 2 — энергия взаимодействия между частицами сорта B, 3 — взаимодействие между частицами сорта A и B. На вставке представлена мгновенная конфигурация частиц системы при $T = 0.05\varepsilon/k_{\rm B}$ и $\phi = 0.13$. Серым показаны частицы сорта A, черными точками условно изображены частицы сорта B.

вание осуществлялось в каноническом ансамбле с термостатом Нозе́—Гувера. Временной масштаб численного эксперимента составлял $20\,000\tau_0$. Система приводилась в состояние равновесия в течение $t = 10\,000\tau_0$. При вычислении средних $\langle \ldots \rangle$ операция усреднения выполнялась по всем частицам системы и по временному интервалу. Исследования проводились для области температур $T \in [0.05, 0.4]\varepsilon/k_{\rm B}$ и объемных плотностей $\phi \in [0.1, 0.13]$.

Обнаружение кластеров в исследуемой системе осуществлялось на основе критерия Стиллинжера [19]. В соответствии с этим критерием две частицы принадлежат одному кластеру, если расстояние между ними $r \leq 1.4\sigma$. Структурный анализ выполнялся на основе радиального распределения частиц g(r).

3. Микроскопическая динамика и динамическая неоднородность

Особенности динамики многочастичной системы могут быть охарактеризованы с помощью так называемой пространственно-временной корреляционной функции Ван-Хова $G(\mathbf{r}, t)$, определяющей среднюю плотность частиц в точке **r** в момент времени t [20]

$$G(\mathbf{r},t) = \frac{1}{N} \left\langle \sum_{i,j=1}^{N} \delta[\mathbf{r} + \mathbf{r}_i(0) - \mathbf{r}_j(t)] \right\rangle, \qquad (2)$$

где $\mathbf{r}_i(t)$ — радиус-вектор положения частицы *i* в момент времени *t*. Следуя работе [20], последнее выражение

можно переписать в виде

$$G(\mathbf{r}, t) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta[\mathbf{r} + \mathbf{r}_{i}(0) - \mathbf{r}_{i}(t)] \right\rangle$$
$$+ \frac{1}{N} \left\langle \sum_{i,j=1}^{N} \delta[\mathbf{r} + \mathbf{r}_{i}(0) - \mathbf{r}_{j}(t)] \right\rangle, \qquad (3)$$

где первый вклад $G_s(\mathbf{r}, t) = (1/N) \langle \sum_{i=1}^N \delta[\mathbf{r} + \mathbf{r}_i(0) - \mathbf{r}_i(t)] \rangle$ — корреляционная функция, которая связана с плотностью вероятности смещения частицы на расстояние $r = |\mathbf{r}|$ за время t от начальных положений следующим образом:

$$P(r,t) = 4\pi r^2 G_s(r,t).$$
 (4)

Применяя пространственное Фурье-преобразование к $G_s(\mathbf{r}, t)$, получаем так называемую некогерентную функцию рассеяния

$$F_{s}(k,t) = \int e^{-ikr} G_{s}(r,t) dr = \frac{1}{N} \left\langle \sum_{j=1}^{N} e^{-i\mathbf{k}\cdot\left(\mathbf{r}_{j}(t) - \mathbf{r}_{j}(0)\right)} \right\rangle,$$
(5)

где $k = |\mathbf{k}|$ — волновое число. Функция $F_s(k, t)$ определяется непосредственно по неупругому рассеянию рентгеновских лучей, света и нейтронов и содержит информацию о пространственно-временны́х корреляциях исследуемой системы [21].

В случае равновесных простых жидкостей, когда динамика является однородной, движение частиц описывается диффузионным уравнением

$$D\nabla^2 P(r,t) = \partial P(r,t)/\partial t, \qquad (6)$$

решение которого имеет следующий вид:

$$P_0(r,t) = 4\pi r^2 \left(\frac{3}{2\pi \langle r^2(t) \rangle}\right)^{3/2} \exp\left(-\frac{3r^2}{2\langle r^2(t) \rangle}\right), \quad (7)$$

где $\langle r^2(t) \rangle$ — второй момент функции P(r, t), определяющий среднеквадратичное смещение частиц. Динамика системы, характеризующаяся плотностью вероятности P(r, t) вида (7), является однородной [22]. В такой системе отсутствует разделение на группы частиц, перемещающихся с различными характеристическими скоростями.

Как видно из уравнения (7), P(r, t) определяется через функцию Гаусса и набор четных моментов величины P(r, t)

$$\langle r^n(t)\rangle = \int_0^\infty r^n P(r,t) dr, \quad n = 0, 2, 4, \dots, \qquad (8)$$

принимает конкретные значения

$$\langle r^{0}(t) \rangle = 1,$$

$$\langle r^{4}(t) \rangle = \frac{5}{3} \langle r^{2}(t) \rangle^{2},$$

$$\langle r^{6}(t) \rangle = \frac{35}{9} \langle r^{2}(t) \rangle^{3},$$

$$\cdots$$

$$\langle r^{n}(t) \rangle = \frac{1 \cdot 3 \cdot 5 \dots (n+1)}{3^{n/2}} \langle r^{2}(t) \rangle^{n/2}.$$
 (9)

Следовательно, любое проявление эффектов динамической неоднородности (негауссовости) [22], выражаемых в отклонении наблюдаемого поведения системы от поведения, описываемого уравнением (7), будет отражаться в значениях моментов $\langle r^n(t) \rangle$. Оценку таких эффектов удобно осуществлять, используя безразмерные величины, определяемые через отношение моментов различных порядков. В качестве примера приведем так называемый параметр негауссовости, предложенный в работе [23],

$$\alpha_2(t) = \frac{3}{5} \frac{\langle r^4(t) \rangle}{\langle r^2(t) \rangle^2} - 1.$$
(10)

Из выражения (10) видно, что в случае однородной динамики, характеризуемой распределением вида (7), параметр $\alpha_2(t)$ будет равен нулю, $\alpha_2(t) = 0$. Увеличение значений параметра будет характеризовать возникновение в системе динамической неоднородности.¹

4. Результаты моделирования

На рис. 2 представлены среднеквадратичное смещение $\langle r^2(t) \rangle$, а также временная зависимость некогерентной функции рассеяния $F_s(k, t)$ при значении волнового числа $k = 7.24\sigma^{-1}$, которое соответствует первому максимуму в статическом структурном факторе S(k), и различных температурах. При высоких температурах затухание функции $F_s(k, t)$ со временем происходит по закону $\propto \exp(-(t/\tau)^{\beta})$. С уменьшением температуры во временны́х зависимостях обеих величин, $\langle |\Delta r(t)|^2 \rangle$ и $F_s(k, t)$, появляется плато, что указывает на практически отсутствующую диффузию частиц. Структурный анализ обнаруживает, что данная особенность непосредственно связана с переходом системы в гелевую фазу и появлением перколяционных кластеров — групп связанных частиц, пронизывающих всю систему (вставки на рис. 2). Следует отметить, что подобное изменение в среднеквадратичном смещении и функции рассеяния наблюдается при переходе переохлажденной жидкости в стекольную фазу [25].

Рис. 2. Среднеквадратичное смещение при объемной плотности $\phi = 0.13$ и различных температурах. На вставке — перколяционный кластер, характерный для гелевой фазы. b) Некогерентная функция рассеяния при волновом числе $k = 7.24\sigma^{-1}$. На вставке — кластеры, характерные для зольфазы. $T, \varepsilon/k_{\rm B}: I = 0.05, 2 = 0.1, 3 = 0.15, 4 = 0.2, 5 = 0.3.$ $6 = T \propto \exp\left(-(t/\tau)^{\beta}\right)$ с показателем $\beta = 1.15$.

На рис. З представлена временная зависимость параметра негауссовости $\alpha_2(t)$ при различных температурах. Из рисунка видно, что при малых временах, соответствующих свободному движению частиц, параметр негауссовости равен нулю: $\alpha_2 \approx 0$. С увеличением временно́го масштаба параметр α_2 начинает принимать значения, отличные от нуля, а затем затухает.²

С уменьшением температуры и переходе в гелевую фазу в $\alpha_2(t)$ появляется выраженный пик, располагающийся на тех же временны́х масштабах, на которых наблюдается плато в $\langle |\Delta r(t)|^2 \rangle$ и $F_s(k, t)$. Эта особенность указывает на то, что неоднородность в динамике исследуемой системы связана с переходом от колебательных процессов к поступательным. Интересным является то, что появление дополнительного выраженного максимума в α_2 также характеризует переход системы в гелевую фазу. Это следует из рассмотрения положения

¹ Подобные рассуждения лежат в основе введения так называемых кумулянтов Биндера, используемых при исследовании критических свойств и фазовых переходов в спиновых системах [24].

² Отметим, что подобная особенность в параметре негауссовости была обнаружена в необратимых (химических) гелях при низких температурах, где взаимодействие частиц осуществлялось через нелинейный упругий потенциал [26,27].

Рис. 3. Временная зависимость параметра негауссовости при постоянной объемной плотности $\phi = 0.13$ и различных температурах. *T*, $\varepsilon/k_{\rm B}$: *I* — 0.4, *2* — 0.3, *3* — 0.15, *4* — 0.085, *5* — 0.07, *6* — 0.05.

максимума в параметре негауссовости при различных ϕ и *T*, что определяет временной масштаб, на котором отклонение *P*(*r*, *t*) от гауссового распределения становится наиболее выраженным.

На рис. 4, *а* показана температурная зависимость положения максимума в параметре негауссовости $\tau_{ng}(T)$ при различных объемных плотностях $\phi = 0.1$, 0.11 и 0.13. Из рисунка видно, что для всех рассмотренных значений плотности ϕ величина $\tau_{ng}(T)$ характеризуется степенной зависимостью $\mathcal{A}T^{-\gamma}$, где параметр \mathcal{A} зависит от плотности системы. При золь-гель-переходе наблюдается выраженный перегиб в $\tau_{ng}(T)$, появление которого обусловлено качественными изменениями динамики системы [10]. Следует отметить, что положение перегиба на кривой соответствует температуре перехода в гелевую фазу $T_g = 0.20 \pm 0.02$, 0.16 ± 0.05 и $0.12 \pm 0.05\varepsilon/k_{\rm B}$ при объемных плотностях $\phi = 0.13$, 0.11 и 0.1 соответственно.

В то же время для определения температуры геляции можно рассмотреть температурную зависимость приведенного размера наиболее крупного кластера $f_N(T) = \mathcal{M}(T)/N$, где \mathcal{M} — число частиц, формирующих кластер. Вблизи золь-гель-перехода величина $f_N(T)$ определяет порог геляции и описывается степенным законом

$$f_N(T) \propto (T_g - T)^{\beta}, \tag{11}$$

где показатель β не зависит от плотности [28,29]. На рис. 4, *b* представлена температурная зависимость величины $f_N(T)$ при различных плотностях, найденная на основе данных моделирования. Сопоставление уравнения (11) с результатами моделирования обнаруживает следующие значения критической температуры: $T_g = 0.18 \pm 0.02$, 0.14 ± 0.05 и $0.12 \pm 0.05\varepsilon/k_B$ при $\beta = 0.1$. Как видно, такие значения температуры T_g хорошо согласуются с найденными через параметр негауссовости (рис. 4, *a*).

На рис. 5, *а* представлена плотность вероятности смещения частицы P(r, t) для системы при температуре $T = 0.05\varepsilon/k_{\rm B}$ и плотности $\phi = 0.13$ в различные моменты времени. Как видно из рисунка, гауссово распределение (7) не позволяет точно воспроизвести результаты моделирования. Отклонение от гауссового поведения свидетельствует о том, что в системе могут существовать различные группы частиц с некоторыми определенными характеристическими скоростями. Так, для объяснения динамической неоднородности в леннард-джонсовской системе вблизи стекольного перехода было

Рис. 4. *а*) Температурная зависимость временно́го масштаба τ_{ng} , на котором наблюдается максимум в параметре негауссовости, и теоретические кривые $\mathscr{A}T^{-\gamma}$, $\gamma = 7.5$, 6.6, 6.1 для золь-фазы при объемных плотностях $\phi = 0.1$, 0.11 и 0.13 соответственно (для гель-фазы $\gamma = 1.1$). b) Температурная зависимость величины $f_N(T)$ при постоянных значениях объемной плотности, а также теоретические кривые $(T_g - T)^{\beta}$, $\beta = 0.1$.

Рис. 5. Плотность вероятности смещения частицы P(r, t) для системы при температуре $T = 0.05\varepsilon/k_{\rm B}$ и плотности $\phi = 0.13$. a — смещение P(r, t) за время t, τ_0 : I — 1, 2 — 2, 3 — 10^3 , а также за время $t = \tau_{ng} = 110\tau_0$. I — результаты моделирования динамики системы, II — подгонка результатов моделирования уравнением (7) по методу наименыших квадратов. b — результат моделирования (I) и отдельные вклады уравнения (12), получаемые в результате подгонки к данным моделирования: $P_0^{\rm immob}(r, \tau_{ng})$ (2) и $P_0^{\rm mob}(r, \tau_{ng})$ (3).

предложено разделение частиц на так называемые быстрые и медленные [22].

Учитывая, что плотность вероятности смещения частицы P(r, t) в момент времени t есть результат как быстрых, так и медленных частиц, величину P(r, t) можно представить в виде

$$P(r, t) = k_{\text{mob}} P_0^{\text{mob}}(r, t) + k_{\text{immob}} P_0^{\text{immob}}(r, t),$$

$$k_{\text{mob}} + k_{\text{immob}} = 1,$$
(12)

где $P_0^{\text{mob}}(r, t)$ и $P_0^{\text{immob}}(r, t)$ — гауссовы распределения вида (7), характеризующие смещения быстрых и медленных частиц соответственно. Величины k_{mob} и k_{immob} характеризуют веса этих распределений.

Весовые коэффициенты k_{mob} и k_{immob} , а также среднеквадратичные смещения частиц $\langle |\Delta r_{\text{mob}}(\tau_{ng})|^2 \rangle$ и $\langle |\Delta r_{\text{immob}}(\tau_{ng})|^2 \rangle$ при плотности $\phi = 0.13$ и различных температурах

$T, \varepsilon/k_{\rm B}$	$k_{ m immob}$	k _{mob}	$\langle \Delta r_{ m immob}(au_{ng}) ^2 angle$	$\langle \Delta r_{ m mob}(au_{ m ng}) ^2 angle$
0.05	0.890	0.11	0.05	0.15
0.07	0.800	0.20	0.05	0.18
0.10	0.853	0.15	0.07	0.15
0.15	0.857	0.14	0.12	0.41
0.20	0.803	0.20	0.21	0.60
0.30	0.663	0.34	0.28	0.80

Из рис. 5, *b* видно, что разложение вида (12) позволяет в нашем случае воспроизвести все особенности функции P(r, t), получаемой на основе моделирования динамики системы. Значения параметров, входящих в разложение (12) и получаемых в результате сравнения с данными моделирования, представлены в таблице. Как видно из таблицы, динамика системы определяется главным образом медленными частицами, вклад которых составляет ~ 0.66-0.89%. При этом наиболее вероятное смещение быстрых частиц превышает наиболее вероятное смещение медленных частиц в $\sqrt{\langle |\Delta r_{\rm mob}(\tau_{ng})|^2 \rangle} / \sqrt{\langle |\Delta r_{\rm immob}(\tau_{ng})|^2 \rangle} \sim 2.8 - 3$ раз. С другой стороны, определение среднеквадратичного смещения отдельно для группы быстрых частиц и группы медленных частиц позволяет оценить непосредственно их коэффициенты диффузии $D = \langle \mathbf{r}^2(t) \rangle / 6t$ на соответствующем временном масштабе [20]. Как видно из рис. 6, на масштабах, где динамическая неоднородность наиболее выражена, диффузия медленных частиц практически отсутствует в отличие от быстрых частиц,

Рис. 6. Среднеквадратичное смещение при объемной плотности $\phi = 0.13$ и температурах $T = 0.05\varepsilon/k_{\rm B}$ (1, 1') и $0.07\varepsilon/k_{\rm B}$ (2,2'), вычисленное для группы быстрых (1, 2) и медленных (1', 2') частиц.

в случае которых среднеквадратичное смещение возрастает со временем.

5. Заключение

В настоящей работе представлены результаты компьютерного моделирования динамики частиц коллоидного раствора вблизи золь-гель-перехода на основе ДЛВОпотенциала для области температур $T \in [0.05, 0.4] \varepsilon / k_{\rm B}$ и объемных плотностей $\phi \in [0.1, 0.13]$. Обнаружено, что в окрестности этого перехода в динамике частиц наблюдается неоднородность, подобная той, что ранее была обнаружена в стекольных системах [10,30,31]. Наблюдаемая динамическая неоднородность проявляется в отклонении плотности вероятности смещения частиц от гауссова распределения, а также в двухступенчатой структурной релаксации. С помощью параметра негауссовости выполнена численная оценка эффектов динамической неоднородности. Установлено, что динамическая неоднородность становится более выраженной с уменьшением температуры. На основе параметра негауссовости и температурной зависимости размера наиболее крупного кластера в системе определена температура геляции T_g при различных плотностях. Установлено, что особенности динамики частиц коллоидного раствора вблизи золь-гель-перехода объясняются условным разделением частиц системы на быстрые (подвижные), дающие основной вклад в трансляционную диффузию, и медленные, ответственные за колебательные процессы.

Список литературы

- [1] F. Sciortino. Nature Mater. 1, 145 (2002).
- [2] N.A.M. Verhaegh, D. Asnaghi, H.N.W. Lekkerkerker. Physica A 264, 64 (1999).
- [3] W.C.K. Poon. Curr. Opin. Colloid Interface. Sci. 3, 593 (1998).
- [4] L. Cipelletti, S. Manley, R.C. Ball, D.A. Weitz. Phys. Rev. Lett. 84, 2275 (2000).
- [5] K. Hara, A. Nakamura, N. Hiramatsu, T. Kanaya. Physica B 241, 982 (1997).
- [6] R. Zoom. Phys. Rev. B 55, 6249 (1997).
- [7] A.V. Mokshin, R.M. Yulmetyev, R.M. Khusnutdinov, P. Hänggi. ΦTT 48, 1662 (2006).
- [8] А.В. Мокшин, Р.М. Юльметьев, Р.М. Хуснутдинов, Р. Hänggi. Хим. физика, 26, 5 (2007).
- [9] M. Hurley, P. Harrowell. J. Chem. Phys. 105, 10521 (1996).
- [10] T. Odagaki, Y. Hiwatary. Phys. Rev. A 43, 1103 (1991).
- [11] A. Arbe, J. Colmenero, F. Alvarez, M. Monkenbusch, D. Richter, B. Farago, B. Frick. Phys. Rev. E 67, 051802 (2003).
- [12] B. Vorselaars, A.V. Lyulin, K. Karatasos, M.A. Michels. Phys. Rev. E 75, 011 504 (2007).
- [13] Б.В. Дерягин, Л.Д. Ландау. ЖЭТФ 11, 12 (1941).
- [14] A. Coniglio, L. De Arcangelis, E. Del Gado, A. Fierro, N. Sator. J. Phys.: Cond. Matter 16, S 4831 (2004).
- [15] A. de Candia, E. del Gado, A. Fierro, N. Sator, A. Coniglio. Physica A 358, 239 (2005).

- [16] A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia, A. Coniglio. Phys. Rev. E 74, 010403 (2006).
- [17] M.P. Allen, P.J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford (1987). 408 p.
- [18] O. Söderström, U. Dahlborg, M. Davidovič. Phys. Rev. A 27, 470 (1983).
- [19] F.H. Stillinger, T.A. Weber. Phys. Rev. B 31, 5262 (1985).
- [20] J.P. Hansen, I.R. McDonald. Theory of simple liquids. Academic Press, London (1986). 416 p.
- [21] A.V. Mokshin, R.M. Yulmetyev, P. Hänggi. J. Chem. Phys. 121, 7341 (2004).
- [22] W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer. Phys. Rev. Lett. **79**, 2827 (1997).
- [23] A. Rahman, K.S. Singwi, A. Sjolander. Phys. Rev. 126, 986 (1962).
- [24] K. Binder. Z. Phys. B 43, 119 (1981).
- [25] W. Gotze. Complex dynamics of glass-forming liquids. Oxford University Press, Oxford (2009). 1937 p.
- [26] K. Kremer In: Computational soft matter: from synthetic polymers to proteins / Eds N. Attig, K. Binder, H. Grubmuller, K. Kremer. NIC Series. Jülich (2004). V. 23. P. 141; http://www/fz-juelich.de/nic-series.
- [27] T. Abete, A. de Candia, E. Del Gado, A. Fierro, A. Coniglio. Phys. Rev. E 78, 041 404 (2008).
- [28] Ю. Федер. Фракталы. Мир, М. (1991). 254 с.
- [29] Ю.Ю. Тарасевич. Перколяция: теория, приложения, алгоритмы. Едиториал УРСС, М. (2002). 112 с.
- [30] L. Cipelletti, L. Ramos, S. Manley, E. Pitard, D.A. Weitz, E.E. Pashkovski, M. Johansson. Faraday Discuss. 123, 237 (2003).
- [31] M.J. Solomon, P. Varadan. Phys. Rev. E 63, 051402 (2001).