05.1;05.3 Высокотемпературная сверхэластичность при B2-L1₀ мартенситных превращениях в кристаллах Co₄₀Ni₃₃Al₂₇

© Е.Ю. Панченко, Ю.И. Чумляков, А.В. Овсянников, І. Karaman

ОСП «Сибирский физико-технический институт ТГУ», Томск, Россия Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA E-mail: panchenko@spti.tsu.ru

Поступило в Редакцию 24 ноября 2006 г.

Приводятся результаты исследования температурного интервала сверхэластичности ΔT_{SE} в [001] монокристаллах Co₄₀Ni₃₃Al₂₇ (at.%) при деформации растяжением и сжатием. Показано, что ΔT_{SE} при растяжении равен 220 К и обратимые B2-L1₀ мартенситные превращения под нагрузкой имеют место при 590 К. При деформации сжатием ΔT_{SE} уменьшается до 105 К и сверхэластичность наблюдается вплоть до 420 К.

PACS: 62.20.Fe, 81.30.Kf, 81.05.Zx

Сплавы Co-Ni-Al испытывают термоупругие мартенситные превращения (МП) из высокотемпературной В2-фазы в тетрагональный L10-мартенсит при охлаждении/нагреве и под нагрузкой [1]. Температура Кюри перехода "парамагнетик—ферромагнетик" $T_{\rm K} = 300 \div 390 \, {\rm K}$ оказывается выше, чем температура начала МП M_S и, следовательно, магнитное поле может приводить к изменению температур МП, вызывать новые явления - магнитопластичность и магнитоэластичность [2]. Сплавы Со-Ni-Al обладают хорошей коррозионной стойкостью, запасом пластичности в высокотемпературной В2-фазе, высокой температурой плавления, низкой плотностью, что делает сплавы этой системы перспективными новыми материалами для использования их в качестве сплавов с высокотемпературным эффектом сверхэластичности и магнитным эффектом памяти формы [3-6]. Для полной реализации всех потенциальных возможностей новых ферромагнитных сплавов Co-Ni-Al необходимо детальное изучение монокристаллов для обнаружения особенностей развития термоупругих МП при охлаждении/нагреве и под нагрузкой, исследование зависимости эффекта памяти

32

формы и сверхэластичности от температуры испытания, ориентации кристалла и способа деформации — растяжение/сжатие.

В данной работе на монокристаллах $Co_{40}Ni_{33}Al_{27}$ (at.%), ориентированных вдоль [001] направления, ставилась задача исследовать влияние способа деформации — растяжение/сжатие, на зависимость от температуры испытания предела текучести ($\sigma_{0.1}$) и сверхэластичности, обусловленной B2-L1₀ МП под нагрузкой.

Монокристаллы Со₄₀Ni₃₃Al₂₇ выращивали по методу Бриджмена в атмосфере инертного газа. Ориентация образцов определялась на рентгеновском дифрактометре "ДРОН-3" с использованием Fe_{Ka} излучения. Образцы для деформации растяжением имели форму двойных лопаток с размером рабочей части 16×1.5×2.8 mm, для деформации сжатием — форму параллелепипеда размером 3×3×6 mm. Для исследования были выбрана ориентация вдоль [001] направления, поскольку величина теоретически рассчитанной деформации решетки вблизи [001] ориентации при B2-L10 МП имеет максимальное значение: при растяжении (9.0%) и сжатии (5.0%) [5,6]. Образцы закаливали от 1623 К в воде комнатной температуры. Перед испытанием образцы шлифовали и электролитически полировали в электролите 210 ml H₃PO₄ + 25 ml Cr_2O_3 при T = 293 K, U = 20 V. Для определения характеристических температур МП в монокристаллах Co₄₀Ni₃₃Al₂₇ использовали зависимость электросопротивления от температуры $\rho(T)$. При температурах начала и конца прямого $M_S = 266 \text{ K}, M_F = 245 \text{ K}$ и обратного $A_S = 275 \,\mathrm{K}, A_F = 298 \,\mathrm{K}$ мартенситного превращения происходит изменение электросопротивления, что соответствует перегибам на кривой $\rho(T)$. Монокристаллы характеризуются узким температурным гистерезисом $\Delta T = A_F - M_S = 32$ K.

Зависимость предела текучести от температуры $\sigma_{0.1}(T)$ для [001] монокристаллов Co₄₀Ni₃₃Al₂₇ при деформации растяжением и сжатием имеет вид, характерный для сплавов, испытывающих мартенситные превращения под нагрузкой (рис. 1). Минимальные значения $\sigma_{0.1}$ соответствуют температуре начала мартенситных превращений $M_S = 266$ K, которая определена по зависимости $\rho(T)$. Максимальные значения $\sigma_{0.1}$ достигаются при $T = M_d$, когда напряжения образования мартенсита высокотемпературной В2-фазы. На зависимости $\sigma_{0.1}(T)$ можно выделить 3 стадии. Первая стадия имеет место при 77 K < $T < M_S$ и связана с деформацией кристаллов мартенсита охлаждения за счет движения

Рис. 1. Температурная зависимость предела текучести для [001] закаленных монокристаллов $Co_{40}Ni_{33}Al_{27}$: *1* — при деформации сжатием; *2* — при деформации растяжением, ΔT_{SE} — температурный интервал сверхэластичности.

двойников и межвариантных границ. При деформации кристаллов в этом температурном интервале с последующим нагревом выше A_F реализуется эффект памяти формы. Кривые $\sigma(\varepsilon)$ при измерении эффекта памяти формы для деформации растяжением представлены на рис. 2. Экспериментальные значения эффекта памяти формы в закаленных [001] монокристаллах $Co_{40}Ni_{33}Al_{27}$ зависят от способа деформации: при сжатии величина эффекта памяти формы равна $\varepsilon = 3.7 \pm 0.5$ (%), а при растяжении — $\varepsilon = 6.5 \pm 0.5$ (%) (табл. 1, рис. 2). Максимальная обратимая деформация при реализации эффекта памяти формы ε как при деформации растяжением, так и при деформации сжатием меньше теоретически рассчитанных значений деформации решетки при B2-L1₀ МП (табл. 1).

Вторая стадия на кривых $\sigma_{0.1}(T)$ (рис. 1) соответствует температурной зависимости критических напряжений, необходимых для начала B2-L1₀ МП под действием внешней нагрузки при $M_S < T < M_d$ и описывается соотношением Клапейрона—Клаузиуса [7]:

$$\frac{d\sigma}{dT} = -\frac{\Delta H}{\varepsilon_0 T_0}.$$
(1)

Здесь ε_0 — деформация превращения, которую экспериментально можно определить по величине эффекта памяти формы; ΔH —

Таблица 1. Механические и функциональные свойства [001] монокристаллов Со₄₀Ni₃₃Al₂₇

Способ	$d\sigma/dT$.	$\sigma_{0,1}(M_s)$.	$\sigma_{0,1}(573 \mathrm{K}).$	ΔT_{SF} .	Ese.	$\varepsilon, \%$	
деформации	MPa/K	MPa	MPa	K	%	эксп.	теор. [5,6]
Растяжение	0.6	42 ± 5	170 ± 10	220 ± 5	3.9 ± 0.5	6.5 ± 0.5	9.0
Сжатие	2.1	28 ± 5	500 ± 10	105 ± 5	2.7 ± 0.5	3.7 ± 0.5	5.0

изменение энтальпии при МП; T_0 — температура равновесия фаз. В [001] монокристаллах $Co_{40}Ni_{33}Al_{27}$ на второй стадии наблюдается зависимость величины $\alpha = d\sigma_{0.1}/dT$ от способа деформации. Так, при сжатии величина $\alpha = 2.1$ МРа/К, а при растяжении — $\alpha = 0.6$ МРа/К (табл. 1). Зависимость величины α от способа деформации можно объяснить исходя из уравнения (1). Малым значениям $\alpha = 0.6$ МРа/К при растяжении соответствует большая величина эффекта памяти формы ($\varepsilon = 6.5 \pm 0.5$ (%)) и, наоборот, при сжатии большие значения $\alpha = 2.1$ МРа/К обусловлены малой величиной эффекта памяти формы $\varepsilon = 3.7 \pm 0.5$ (%) (табл. 1). Низкий уровень деформирующих напряжений $\sigma_{0.1}(M_S) \sim 28 \div 40$ МРа в мартенсите и сравнительно вы-

Рис. 2. Кривые $\sigma(\varepsilon)$ для [001] закаленных монокристаллов Co₄₀Ni₃₃Al₂₇ при деформации растяжением ($T \approx M_s = 260$ K) с последующим нагревом (отмечено буквой h) выше $A_F = 298$ K; максимальная обратимая деформация соответствует величине эффекта памяти формы.

Рис. 3. Петли сверхэластичности для [001] закаленных монокристаллов $Co_{40}Ni_{33}Al_{27}$ в зависимости от температуры испытания при деформации растяжением (*a*) и степени деформации при растяжении T = 408 K (*b*), при сжатии T = 353 K (*c*).

сокие прочностные свойства В2-фазы приводят в [001] монокристаллах $Co_{40}Ni_{33}Al_{27}$ к наблюдению сверхэластичности при $T > A_F = 298$ К в широком температурном интервале $\Delta T_{SE} = 100 \div 220$ К (рис. 1, 3, *a*). Впервые обнаружено, что температурный интервал наблюдения сверхэластичности ΔT_{SE} оказывается зависящим от способа деформации. Так, при растяжении наблюдается высокотемпературная сверхэластичность в широком интервале температурный интервал сверхэластичность в широком интервале температур $\Delta T_{SE} = 373 \div 593$ К = 220 К (рис. 3, *a*). При сжатии температурный интервал сверхэластичности в 2 раза меньше $\Delta T_{SE} = 318 \div 423$ К = 105 К. Максимальная температура, при которой наблюдается сверхэластичность, оказывается равной при растяжении $T_2 = 593$ К, а при сжатии — $T_2 = 423$ К. Петли сверх-

37

эластичности в зависимости от степени деформации при растяжении и сжатии представлены на рис. 3, *b*, *c*. Экспериментально установлено, что величина сверхэластичности (ε_{SE} — максимальная обратимая деформация в температурном интервале сверхэластичности) меньше величины эффекта памяти формы при деформации как растяжением, так и сжатием (табл. 1). Величина механического гистерезиса $\Delta \sigma$ слабо увеличивается с ростом температуры (рис. 3, *a*) и степени деформации (рис. 3, *b*, *c*).

Третья стадия на кривых $\sigma_{0.1}(T)$ при $T > M_d$ связана с пластической деформацией В2-фазы. Установлено, что предел текучести высокотемпературной В2-фазы в [001] монокристаллах Co₄₀Ni₃₃Al₂₇ определяется способом деформации (рис. 1). Предел текучести В2-фазы при сжатии $\sigma_{0.1}$ (573 K) равен 500 МРа и в 2.7 раза превышает предел текучести этих монокристаллов при деформации растяжением $\sigma_{0.1}$ (573 K) = 170 МРа.

Температура начала сверхэластичности (T_1) в [001] кристаллах $Co_{40}Ni_{33}Al_{27}$ на 20 ÷ 75 К оказывается больше A_F (табл. 1) и, следовательно, наблюдается стабилизация мартенсита напряжений. Кристаллы $L1_0$ -мартенсита при $T \ge A_F$ являются термодинамически нестабильными и должны испытывать обратные МП в высокотемпературную фазу при снятии нагрузки. Однако это происходит при растяжении при $T_1 = A_F + 75 = 373$ К, при сжатии при $T_1 = A_F + 20 = 318$ К. Для появления обратимых B2-L1₀ МП под нагрузкой и соответственно сверхэластичности критический уровень деформирующих напряжений $\sigma_{0.1}$ при $T = T_1$ должен быть больше величины механического гистерезиса $\Delta\sigma$:

$$\sigma_{0.1}(T_1) > \Delta \sigma = 2\sigma_{0.1}(M_S) + \Delta T \frac{d\sigma}{dT}$$
(2)

и температура появления первой замкнутой петли сверхэластичности $T_1^{theor.}$ может быть выше A_F [8]:

$$T_1^{\text{theor.}} = A_F + \sigma_{0.1}(M_S) \frac{dT}{d\sigma}.$$
(3)

Здесь $\sigma_{0.1}(M_S)$ — критические напряжения при $T = M_S$; $\Delta T = A_F - M_S$ — величина температурного гистерезиса; $d\sigma/dT$ — изменение деформирующих напряжений с температурой, которое описывается соотношением (1).

Таблица 2. Теоретические и экспериментальные значения механического гистерезиса $\Delta \sigma$ и температуры начала появления сверхэластичности T_1 при деформации растяжением и сжатием закаленных [001] монокристаллов Co₄₀Ni₃₃Al₂₇

Способ деформации	$\Delta \sigma_{theor.}$, MPa	$\Delta \sigma_{exp}$, MPa	$\sigma_{0.1}^{exp}(T_1)$, MPa	$T_1^{theor.}, \mathbf{K}$	T_1^{exp} , K
Растяжение	102	78 ± 5	93 ± 5	$A_F + 70$	$A_{F} + 75$
Сжатие	119	80 ± 5	90 ± 5	$A_F + 12$	$A_{F} + 20$

Теоретически рассчитанные значения $\sigma_{0.1}^{theor.}(T_1)$, $T_1^{theor.}$ по соотношениям 2 и 3 для [001] монокристаллов Со₄₀Ni₃₃Al₂₇ близки к экспериментально найденным значениям $\sigma_{0,1}(T_1)$ и T_1 (табл. 2). При деформации растяжением и сжатием первая петля сверхэластичности наблюдается при близких уровнях напряжений $\sigma_{0.1}^{pres.}(T_1) \approx \sigma_{0.1}^{ten.}(T_1) \approx 100$ MPa, но при разных значениях Т1. Зависимость температуры начала сверхэластичности от способа деформации — растяжение/сжатие, связана с тем, что необходимый уровень напряжений $\sigma_{0,1}(T_1)$ при сжатии достигается при меньшей температуре $T_1^{pres.} = 318 \, \text{K}$, чем при растяжении $(T_1^{ten.} = 373 \text{ K})$ из-за зависимости $d\sigma/dT$ от способа деформации (табл. 1). С этих же позиций можно объяснить зависимость температуры конца сверхэластичности (T₂) и температурного интервала сверхэластичности (ΔT_{SE}) от способа приложения нагрузки. При деформации сжатием высокие значения $d\sigma/dT$ приводят к тому, что необходимые для генерации дефектов кристаллического строения напряжения $\sigma_{0.1} \sim 300$ MPa достигаются при $T_2 = 423$ K и $\Delta T_{SE} = 105$ K. При растяжении из-за низких значений $d\sigma/dT$ условия для генерации дефектов достигаются при $\sigma_{0.1} \sim 200 \text{ MPa} \ (T_2 = 593 \text{ K}).$ В результате температурный интервал при растяжении составляет $\Delta T_{SE} = 220 \, \text{K}.$

Полученные результаты показывают, что управление температурным интервалом сверхэластичности в монокристаллах $Co_{40}Ni_{33}Al_{27}$ достигается выбором ориентации для исследования вблизи [001] направления и способа деформации — растяжения, обеспечивающих слабую температурную зависимость напряжений, необходимых для генерации мартенсита при $T > M_S$. В этом случае B2-L1₀ обратимые термоупругие мартенситные превращения под нагрузкой могут быть реализованы в широком температурном интервале 373 К < T < 593 К.

Работа выполнена при финансовой поддержке грантов РФФИ № 05-08-17915-а, 06-08-08011-офи; гранта CRDF, RUE1-2690-TO-05; гранта № 34-06-02 Фонда ОАО ММК, ИТЦ "Аусферр" и ФНиО "Интеле".

Список литературы

- [1] Oikawa K., Ota T., Ohmori T et al. // Appl. Phys. Lett. 2002. V. 8. P. 5201-5203.
- [2] James R.D., Wuttig M. // Philos. Mag. 1998. V. A77. P. 1273–1299.
- [3] Chumlyakov Y.I., Kireeva I.V., Karaman I. et al. // Russian Phys. J. 2004. V. 47. P. 893–912.
- [4] *Hamilton R.F., Schitoglu H., Efstathiou C.* et al. // Acta Mater. 2006. V. 54. N 3. P. 587–599.
- [5] Hamilton R.F., Sehitoglu H., Efstathiou C. et al. // Scripta Mater. 2005. V. 53. N 1. P. 131–136.
- [6] Karaca H.E., Karaman I., Chumlyakov Y.I. et al. // Scripta Mater. 2004. V. 51. P. 261–266.
- [7] Otsuka K., Wayman C.M. Shape memory materials. Cambridge University PRESS, 1998. 284 p.
- [8] Liu Y., Galvin S.P. // Acta Mater. 1997. V. 45. N 11. P. 4431-4439.