05 Симметричные и асимметричные доменные структуры в полубесконечном монокристалле

© Ю.В. Толстобров, Н.А. Манаков, А.М. Еремин

Бийский педагогический государственный университет им. В.М. Шукшина E-mail: rektor@bigpi.biysk.ru

Поступило в Редакцию 8 июня 2006 г.

Методом микромагнитного моделирования рассчитано распределение намагниченности в полубесконечном монокристалле квадратного поперечного сечения. В широком диапазоне изменения магнитной анизотропии системы при фиксированных прочих параметрах установлено существование устойчивых как симметричных, так и асимметричных доменных структур.

PACS: 75.60.-d

При расчете распределения намагниченности в пластинке одноосного низкоанизотропного магнетика $Ni_{80}Fe_{20}$ размером $1000 \times 500 \times 250$ nm было установлено [1], что симметричная внутри четырехдоменная структура Ландау на поверхности образца асимметрично искажается (рис. 1). Даже заданная в качестве начального приближения сквозная симметричная структура оказывается неустойчивой и трансформируется в асимметричную. Эффект неустойчивости симметричной структуры авторы связывают с низкой анизотропией и большой толщиной пластинки. Расчеты для более тонкой пластинки размером $2000 \times 1000 \times 20$ nm, когда реализуются неелевские доменные границы, показали [2], что в этом случае возможны метастабильные состояния как асимметричной, так и симметричной структур Ландау. Представленные результаты позволяют предполагать, что увеличение толщины пластинки приводит к неустойчивости симметричной структуры. Отсюда возникает вопрос о возможности существования устойчивых симметричных структур Ландау на поверхности стержнеобразных частиц, которые можно рассматривать как частный случай пластинок, когда толщина (длина стержня) много больше

24

<i>```</i>		***********
***********	1 / / / / / / / / / / / / / / / / / / /	***********
***********	111000000000000000000000000000000000000	{*************
***********	************	************
* * * * * * * * * * * * * * * *	************	**********
* * * * * * * * * * * * * * * * *	***********	*************
* * * * * * * * * * * * * * * * *	**********	*************
* * * * * * * * * * * * * * * *		********
* * * * * * * * * * * * * * * * * * * *		*****
****		11114
***************		*************
****		111144444444444
*************		*********
**************		*********
**************		**********
*************		*********

**************		111111111111111111111111111111111111111
****		111111111111
****		111111111111
**************		1111111111111
*************		11111111111
***************		111111111111
* * * * * * * * * * * * * * * * * * * *		111111111111
* * * * * * * * * * * * * * * * * *	1111111111	111111111111111111111111111111111111111
* ****************		11111122226111
· · · · · · · · · · · · · · · · · · ·		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
\$ ************************************		
\~~~~~~~~~~~~		
	************	*****************

Рис. 1. Распределение намагниченности в пластинке Ni₈₀Fe₂₀, представленное в работе [1]. Слева направо: передняя поверхность, среднее сечение, задняя поверхность. Ось легкого намагничивания ориентирована вертикально.

поперечного размера, а также о роли магнитной анизотропии в формировании симметричных или асимметричных структур.

В настоящей работе рассчитываются доменные структуры в полубесконечном стержне с квадратным поперечным сечением $L \times L$. Расчетной областью является призма **D** с поперечным сечением $L \times L$ и конечной высотой *h*, прилегающая к торцу стержня, который будем называть верхним. Распределение намагниченности в области **D** предполагается трехмерным и находится путем численного решения при условии, что в полубесконечной части стержня ниже области **D** намагниченность **M** в любом поперечном сечении совпадает с полем **M** на нижней границе области **D**. Ось легкого намагничивания лежит в плоскости поперечного сечения и ортогональна боковой грани призмы **D**. Для расчета распределения намагниченности в области **D** использовалось уравнение Ландау–Лифшица [3], которое можно записать в виде:

$$\frac{\partial \mathbf{m}}{\partial \tau} = \mathbf{m} \times \mathbf{H} - \alpha \mathbf{m} \times (\mathbf{m} \times \mathbf{H}), \tag{1}$$

где $\mathbf{m} = \mathbf{M}/M_s$ — единичный вектор; $M_s = |\mathbf{M}|$; $\tau = t\gamma M_s$; t время; γ — гиромагнитное отношение, $\mathbf{H} = -\nabla U + \frac{2A}{M_s^2 L^2} \Delta \mathbf{m} + \mathbf{w} (\mathbf{m} \cdot \mathbf{w}) (2K_1 + 4K_2(1 - (\mathbf{m} \cdot \mathbf{w})^2))/M_s^2$ — вектор эффективного поля,

А — константа обмена, K_1 , K_2 — константы магнитной анизотропии, **w** — единичный вектор направления оси легкого намагничивания; *U* потенциал магнитостатического поля, создаваемый бесконечным стержнем (а не только областью **D**). Безразмерный параметр α определяет вклад диссипативного члена. На гранях призмы **D** для уравнения (1) ставилось граничное условие: $\partial \mathbf{m}/\partial(-\mathbf{n}) = \mathbf{0}$, где **n** — единичная внешняя нормаль к поверхности призмы. Для верхней и боковых граней это условие означает отсутствие поверхностной энергии, на нижней неизменность распределения намагниченности **m** вдоль стержня.

Равновесные состояния системы находились вычислением стационарных решений дискретного аналога уравнения (1). Потенциал U вычислялся решением дискретного аналога уравнения Пуассона, который строился методом, аналогичным описанному в работе [4]. За исходные были взяты магнитные параметры Со при комнатной температуре: $A = 1.3 \cdot 10^{-11}$ J/m, $M_s = 0.142$ T, $K_1 = 4.0 \cdot 10^5$ J/m³, $K_2 = 1.2 \cdot 10^5$ J/m³. Изменение анизотропии системы проводилось путем умножения констант K_1 и K_2 на коэффициент $K_T \leq 1$ при неизменных прочих параметрах системы. Как и в работе [4] в расчетах использовались параметры $\alpha = 0.15$ и L = 190 nm.

Решения проверялись заданием случайного возмущения в установившееся векторное поле, при котором наибольший угол отклонения составлял 0.25 гаd. Затем контролировалось возвращение системы в исходное состояние. Использовалось проектирование векторных полей с одной расчетной сетки на другую и изменение высоты призмы h, максимальное значение которой достигало 10*L*. На рис. 2 показана верхняя часть области **D** в виде проекций рассчитанных полей **m** на крупную сетку.

Решение, полученное из начального однородно намагниченного по легкой оси состояния при $K_T = 1$, показано на рис. 2 в верхнем ряду слева. Малые возмущения начального условия приводят как к симметричному решению, так и к небольшой асимметрии из-за различной ориентации поля **m** в доменных границах, параллельных легкой оси. Причем возможны равновесные состояния, когда две половины одной границы противоположно ориентированы. Такой случай показан на рис. 2, когда в левой половине передней границы намагниченность ориентирована вниз, а в правой — вверх. В глубине монокристалла (на нижней **D**) распределение намагниченности соответствует наблюдаемой на поверхности и совпадает с рассчитанной в [4] для бесконечно

Рис. 2. Изменение распределения намагниченности в верхней части полубесконечного стержня: верхний ряд — при уменьшении K_T ; нижний ряд при увеличении K_T . Символом " \leftrightarrow " обозначено направление оси легкого намагничивания.

длинного монокристалла. Уменьшение K_T до 0.1 качественно изменяет вид доменной структуры: на верхней грани вместо структуры Ландау видна некоторая асимметричная структура, не соответствующая распределению намагниченности в глубине, а на передней грани появляется вихревая область. Дальнейшее уменьшение K_T до 10^{-3} приводит к перемещению вихря на верхнюю грань, где его расположение асимметрично и подобно наблюдаемому на поверхности пластинки (рис. 1). В глубине монокристалла из-за низкой анизотропии устанавливается почти однородное поле намагниченности вдоль стержня, обусловленное анизотропией формы. Дальнейшее уменьшение K_T к заметному изменению распределения намагниченности не приводит. Увеличение коэффициента K_T до 1 сохраняет асимметричное положение вихря на верхней грани и сопровождается его вытягиванием вдоль легкой оси.

Если же выбрать в качестве начального состояния низкоанизотропное ($K_T = 10^{-3}$) однородно намагниченное вдоль стержня, то получается ожидаемое из общих физических соображений распределение намагниченности, показанное на рис. 2 в нижнем ряду справа, когда внутри стержня поле **m** почти не изменяется, а на верхней грани устанавливается симметричный вихрь, понижающий магнитостатическую энергию системы. При увеличении K_T до 1 вихрь на верхней грани вытягивается вдоль легкой оси, а внутри образца образуется симметричная доменная структура, соответствующая доменной структуре на поверхности.

Таким образом, на торцевой поверхности полубесконечного стержня квадратного поперечного сечения в широком диапазоне изменения анизотропии возможно устойчивое существование как симметричных, так и асимметричных доменных структур Ландау. Можно предположить, что эффект неустойчивости симметричной структуры, полученный в работе [1], связан с взаимным влиянием противоположных сторон пластинки и должен исчезнуть с увеличением ее толщины.

Список литературы

- [1] Hertel R., Kronmuller H. // Phys. Rev. B. 1999. V. 60. N 10. P. 7366-7378.
- [2] Kronmuller H., Hertel R. // J. Magn. Mater. 2000. V. 215–216. P. 11–17.
- [3] Браун У.Ф. Микромагнетизм. М.: Наука, 1979. 160 с.
- [4] Толстобров Ю.В., Манаков Н.А., Черемисин А.А. // ФММ. 2004. Т. 98. № 3. С. 16–22.