01;05 Зависимость доли кристаллической фазы в системе нанокластеров Si в матрице SiO₂ от температуры отжига

© В.И. Емельянов, В.Н. Семиногов

Московский государственный университет E-mail: emel@em.msk.ru Институт проблем лазерных и информационных технологий РАН, Троицк E-mail:svn@laser.ru

В окончательной редакции 16 июня 2006 г.

Построена модель кристаллизации аморфных нанокластеров в твердотельной матрице. Получено согласие рассчитанной зависимости доли кристаллической фазы от температуры отжига с экспериментальными данными.

PACS: 61.46.-w

1. Интерес к физике образования нанокристаллов (НК) Si в матрице SiO₂ возрос в последнее время в связи с наблюдением усиления света в наноструктурах кремния [1], а также с перспективами создания эффективных светодиодов и лазеров на основе НК Si [2-5], совместимых с кремниевой технологией их изготовления. Одним из способов получения HK Si в SiO₂, является химическое осаждение пленок SiO_x из газовой фазы на подложку с последующим тепловым отжигом [6]. Ключевую роль в определении оптических свойств получаемой таким образом системы НК играет ее структура, зависящая от температуры и времени отжига. Использование для изучения структурных свойств системы НК Si усовершенствованной техники просвечивающей электронной микроскопии с селекцией по энергии позволило измерить концентрации как кристаллических, так и аморфных кластеров Si, относительная доля которых прогрессивно уменьшается с ростом температуры отжига [6]. В настоящей работе предложена модель кристаллизации аморфных нанокластеров в матрице, которая хорошо описывает экспериментальную зависимость [6] доли кристаллической фазы в системе нанокластеров Si от температуры отжига и качественно объясняет другие экспериментальные данные.

18

Рассмотрим какой-нибудь кластер аморфного Si радиуса r в матрице. Кластер находится под сжимающим напряжением σ , действующим со стороны матрицы (см. ниже). Решение уравнения равновесия для деформируемого упругого шара, находящегося под внешним напряжением σ , проводимое аналогично случаю шарового слоя [8], показывает, что напряжение внутри шара постоянно (не зависит от расстояния от центра шара) и равно σ . Энергия активации кристаллизации E_a в Si уменьшается при действии сжимающего напряжения [9] и становится равной $E_a - v\sigma$, где v — активационный объем. Если предположить, что малый кластер кристаллизуется как единое целое, то в качестве активационного объема следует взять объем кластера $v(r) = 4\pi r^3/3$. Тогда характерное время кристаллизации кластера радиусом r равно $\tau(r) = \tau_0 \exp((E_a - v(r)\sigma)/k_BT)$. Определим для заданной температуры T и заданного времени отжига t_0 "радиус кристаллизации", $r_c = r_c(T, t_0)$, условием $\tau(r_c) = t_0$. Из этого определения находим

$$r_c = A (1 - (T/T_c))^{1/3}, \quad A = (3E_a/4\pi\sigma)^{1/3},$$
 (1)

где характеристическая "температура кристаллизации"

$$T_c = E_a / k_B \ln(t_0 / \tau_0).$$
 (2)

При этом кластеры с $r > r_c$ после отжига находятся в кристаллическом состоянии, а кластеры с $r < r_c$ в аморфном состоянии. В общем случае $\sigma = \sigma_1 + \sigma_2(T)$, где σ_1 — температурно-независимый вклад, а $\sigma_2(T) = bT$ — зависящая от температуры часть напряжения (b — константа). В случае $\sigma_1 \gg \sigma_2(T)$ выражение для r_c задается формулой (1), где $\sigma \to \sigma_1$. В обратном пределе $\sigma_2(T) \gg \sigma_1$ из представлений (1)

имеем

$$r_c = A((T_c/T) - 1)^{1/3}, \qquad A = (3k_B \ln(t_0/\tau_0)/4\pi b)^{1/3}.$$
 (3)

В частности, если матрица SiO_y с относительно большим коэффициентом теплового расширения напыляется на подложку с относительно малым коэффициентом расширения, то $b = K\alpha_T$, где K — модуль упругости в матрице SiO_y, а α_T — коэффициент теплового расширения кластера Si.

Рост и коалесценция кластеров определяется вероятностями испускания и присоединения атомов к ним [10]. Предполагая, что эти вероятности одинаковы для аморфных и кристаллических кластеров, мы характеризуем полный ансамбль кластеров единой функцией распределения по размерам f(r), такой что $\int_{0}^{\infty} f(r)dr = N$, где N — полное число кластеров в ансамбле. Относительная доля объема кристаллической фазы $c \equiv V_c/V$, где V_c и V — суммарные объемы кристаллических и всех кластеров соответственно, задается формулой

$$c = \int_{r_c}^{\infty} r^3 f(r) dr \Big/ \int_{0}^{\infty} r^3 f(r) dr = 1 - \left(\int_{0}^{r_c} r^3 f(r) dr \Big/ \int_{0}^{\infty} r^3 f(r) dr \right).$$
(4)

Эксперимент показывает, что на промежуточных временах отжига (порядка часа при $T \sim 1000$ K) функция распределения имеет гауссову форму [11] и лишь на значительно больших временах (10–16 часов) приобретает асимметричную форму (т.н. логарифмически-нормальное распределение [11,10]). Ограничиваясь здесь промежуточными временами, достаточными для полной кристаллизации, зададим функцию распределения гауссовым выражением $f(r) = B \exp(-(r - r_0)^2/D^2)$, где B — константа нормировки, r_0 — средний радиус кластера, D — дисперсия распределения. Проведем расчет температурной зависимости c = c(T) по формуле (4) для случая экспериментов [6], где пленка SiO₂ напылялась на кремниевую подложку (имеющую меньший коэффициент теплового расширения, чем SiO₂). Температура отжига варьировалась в пределах от 1273 до 1523 К. В выражении для f(r) положим $r_0 = r_{init} + 6 \cdot 10^{-3}(T - 1273)$, что аппроксимирует экспериментальную зависимость [6], где начальный (до отжига) радиус кластера $r_{init} = 1$ nm,

Рис. 1. Средний радиус кластера r_0 , вычисленный по формуле (6) (пунктир), и радиус кристаллизации r_c , вычисленный по формуле (3) (сплошная кривая) как функции температуры отжига T.

и положим подгоночный параметр D = 0.5 nm. Предел интегрирования r_c в представлении (4) зададим формулой (3) (случай $\sigma_2(T) \gg \sigma_1$), где положим A = 4.5 nm, $T_c = 1520$ K. Соответствующие зависимости среднего радиуса r_0 и радиуса кристаллизации r_c от температуры показаны на рис. 1. Видно, что для данного r_{init} существует минимальная температура T_{min} отжига (соответствующая точке пересечения кривых r_0 и r_c), ниже которой кластер после отжига остается в аморфном состоянии, причем значение T_{min} уменьшается с ростом r_{init} . Поскольку r_{init} возрастает с ростом концентрации Si в исходной матрице SiO_x [10], то T_{min} должна быть тем ниже, чем выше концентрация Si, что соответствует эксперименту [12]. Рассчитанная зависимость c = c(T), рис. 2, хорошо описывает экспериментальную зависимость [6]. Сделаем численные значения параметров модели A и T_c физически обоснованы. Положим для оценки $t_0 = 1$ h [6], $\tau_0 = 10^{-12}$ s, $\alpha_T = 10^{-6} \text{ deg}^{-1}$, $K = 10^{10} \text{ erg} \cdot \text{сm}^{-3}$.

Рис. 2. Зависимость доли кристаллической фазы c = c(T) в процентах от температуры отжига. Кривая рассчитана по формулам (2)–(6). Кружки — экспериментальные данные из работы [6].

Для энергии активации используем значение $E_a = 4.7 \text{ eV}$, что согласуется с имеющимися литературными данными [13]. Тогда из (3) получим A = 4.9 nm, а из (2) значение $T_c = 1500 \text{ K}$, что в близком соответствии с использованными значениями подгоночных параметров.

Список литературы

- [1] Dal Negro L., Casanelli M., Pavesi L. et al. // Appl. Phys. Lett. 2003. T. 82. C. 4636.
- [2] Kenyon A.J. // Semiconductor Science and Technology. 2005. T. 20. P. R65.
- [3] Iacona F., Pacifici D., Irrera A. et al. // Appl. Phys. Lett. 2002. V. 81. P. 3242.
- [4] Castanga M.E., Coffa S., Monaco M. et al. // Physica E. 2003. V. 16. P. 547.
- [5] Лазарук С.К., Лешок А.А., Лабунов В.А. и др. // ФТП. 2005. V. 39. Р. 149.
- [6] Iacona F., Bongiorno C., Spinella C. // J. Appl. Phys. 2004. V. 95. P. 3723.
- [7] Лифшиц Е.М., Питаевский Л.П. // Физическая кинетика. М.: Наука, 1979.

- [8] Ландау Л.Д., Лифшиц Е.М. // Теория упругости. М.: Наука, 1987.
- [9] Nugren E., Aziz M.J., Turnbull D. et al. // Appl. Phys. Lett. 1985. V. 47. P. 232.
- [10] Bonafos C., Colombeau B., Altibelli A. et al. // Nucl. Instr. and Meth. in Phys. Res. B. 2001. V. 178. P. 17.
- [11] Lamaestre R.E., Bernas H. // Phys. Rev. B. 2006. P. 125317.
- [12] Nesbit L.A. // Appl. Phys. Lett. 1985. V. 46. P. 38.
- [13] Zellama K., Germain P., Squelard S. // J. Appl. Phys. 1979. V. 50. P. 6995.