05.4 Влияние условий изготовления на сверхпроводящие свойства стержней на основе иттрия

© С.А. Чурин

Институт физики микроструктур РАН, Нижний Новгород E-mail: churin@ipm.sci-nnov.ru

Поступило в Редакцию 8 июня 2006 г.

Изучено влияние термокапиллярного эффекта на вольт-амперные характеристики высокотемпературных сверхпроводящих (ВТСП) стержней $Y_{0.8}Sm_{0.2}Ba_2Cu_3O_{7-\delta}$ и $Y_1Ba_2Cu_3O_{7-\delta}+Y_2BaCuO_5$. Предложен механизм кристаллизации ВТСП материалов на основе иттрия и редких земель. Выращены стержни с транспортным током более 60 А в сверхпроводящем состоянии. Показано, что межблочные границы в текстурированных стержнях на основе иттрия, возможно, содержат больше кислорода, чем в отдельном кристаллите.

PACS: 74.81.Bd

Высокотемпературные сверхпроводящие (ВТСП) объемные материалы находят применение в диамагнитных подвесах, двигателях, токовводах к криомагнитам [1-3]. Однако плотность критического тока в ВТСП объемных материалах несколько меньше, чем в эпитаксиальных ВТСП пленках [4]. Это связано с наличием несверхпроводящих фаз в объеме сверхпроводника и по границам кристалликов, из которых состоит образец. Разориентация кристаллитов относительно друг друга в поликристаллическом образце, наличие микротрещин, границ между кристалликами также не способствуют увеличению плотности критического тока образца. Динамика когерентности в ВТСП материалах сравнима с размерами постоянной решетки и для достижения большого транспортного тока в ВТСП изделиях на основе редких земель необходимо их высокое кристаллическое совершество по всему объему. Объемные квазикристаллы YBaCuO с высокой плотностью критического тока получают top-seed методом [3]. Однако этот метод требует много материала для изготовления, например, одного стержня.

77

С другой стороны, неясен механизм образования межблочных границ в квазикристаллах и текстурах YBaCuO. В настоящей работе предложены механизм кристаллизации редкоземельных ВТСП материалов и метод, позволяющий получать стержни YBaCuO с высоким критическим током для токовводов к соленоидам из низкотемпературного сверхпроводящего провода.

По стандартной порошковой технологии готовились стержни длиной до 18 ст и диаметром 9 mm следующего состава: 4 части $Y_1Ba_2Cu_3O_{7-\delta} + 1$ часть Y_2BaCuO_5 (образец s1) и $Y_{0.8}Sm_{0.2}Ba_2Cu_3O_{7-\delta}$ (образец s2). Далее стержни кристаллизовались в вертикальной трубчатой печи в различных температурных полях. В первом случае, случай зонной плавки, градиент температуры в области кристаллизации составлял 15-20° С/ст и был направлен перпендикулярно оси стержня, направлен только вдоль оси стержня (образец s1). Высота зоны частичного плавления стержня была 2-3 ст. Во втором случае кристаллизация стержня (образец s2) осуществлялась при наличии постоянной составляющей градиента температуры (10-15° C/cm), направленного перпендикулярно оси стержня по всей его длине. Режимы нагрева, частичного плавления и остывания стержней в печи были близки к общепринятым [5]. В обоих случаях стержни выводились из зоны кристаллизации со скоростью 5 mm/h. После кристаллизации стержни дополнительно отжигались в токе кислорода. Для последующих измерений четерыхзондовым методом на стержни наносились серебряные контакты. Измерялись зависимость падения напряжения на стержнях от температуры при различных величинах транспортного тока через них и вольт-амперные характеристики стержней в сверхпроводящем состоянии при температуре кипения жидкого азота. Результаты измерений приведены на рис. 1 и 2. Видно, что на поведение зависимости U(T) (рис. 1) влияет величина транспортного тока. С увеличением тока, на котором выполняются измерения, температура перехода в сверхпроводящее состояние становится заметно меньше. На рис. 2 приведены вольт-амперные характеристики для стержней, выращенных методом зонной плавки (образец s1), и методом, в котором градиент температуры в процессе кристаллизации был перпендикулярен оси стержня (образец s2). Видно, что плотность критического тока значительно выше в том случае, если градиент температуры в процессе кристаллизации был перпендикулярен оси стержня (образец s2).

Рис. 1. Зависимость падения напряжения на образце s2 (YSmBaCuO) от температуры для различных значений токов через образец.

Для объяснения полученных результатов необходимо отметить, что длина когерентности ВТСП материала сравнима с величиной его постоянной решетки. Поэтому характеристики изделений из ВТСП материалов находятся в сильной зависимости от их кристаллической структуры [6]. Для того чтобы вырастить ВТСП изделие с совершенной структурой, необходимо понять, как происходит его кристаллизация. В данном случае необходимо принять во внимание характер плавления материала и механизм массопереноса в процессе плавления и кристаллизации стержня. Хорошо известно, что ВТСП материалы состава ReBaCuO, где символом Re обозначается редкоземельный элемент, плавятся инконгруэнтно. В процессе плавления происходит распад материала на твердую Y_2BaCuO_5 и жидкую $BaCu_2O_2$ фазы. Необходимо принять во внимание, что стержни были получены из порошка и в исходном состоянии (до кристаллизации) содержали поры. Необходимо напомнить также, что исходный материал содержит

120 ■ s1 ♦ s2 100 80 $U \cdot 10^{-5}$, V 60 40 20 0 15 20 25 35 40 45 50 55 -5 5 10 30 60 0 65 I, A

Рис. 2. Вольт-амперные характеристики для образцов s1 и s2 при температуре кипения жидкого азота.

большое количество кислорода, атомы которого в процессе плавления объединяются в поры. В процессе плавления жидкая фаза начинает проникать в поры и двигаться по их поверхности в более холодную часть стержня [5]. Движения жидкой фазы вызвано тем, что коэффициент поверхностного натяжения на границе жидкой фазы и воздуха, заполняющего пору, растет с понижением температуры. Поры, в свою очередь, двигаются в более горячую часть стержня. Скорость движения пор пропорциональна их радиусу, градиенту температуры и обратно пропорциональна вязкости жидкой фазы. Таким образом происходит частичное разделение фаз в процессе плавления изделений из ВТСП материалов. Более холодная часть образца обогащается жидкой фазой, более горячая — твердой, поры переносятся в более горячую часть стержня. Процесс разделения фаз является быстрой стадией и длится в нашем случае первые десятки минут. Кристаллизация длится часами и начинается с того, что твердая фаза растворяется в жидкой и

переносится в результате диффузии к ее наиболее холодной части, где в результате химической реакции образуется ВТСП фаза [7,8]. Процесс кристаллизации длится до тех пор, пока выдерживаются необходимые температурные условия, существуют жидкая и твердая фазы. Однако вследствие инконгруэнтного плавления и переноса масс стехиометрия стержней меняется от точки к точке. Вместе с этим меняется и температура начала кристаллизации ВТСП фазы от точки к точке. В результате охлаждения спонтанная кристаллизация стержня начинается сразу в нескольких точках, что ведет к образованию поликристаллической структуры стержня. По границам кристалликов выделяются микропоры [5], которые и образуют границы блоков. Микропоры убегают в более горячую часть кристаллика, которой является граница растущего кристаллика и жидкой фазы. Вернемся теперь к нашему эксперименту. В случае зонной плавки, образец s1, в области зоны плавления градиент температуры направлен вдоль оси стержня. Вне зоны плавления температура внутри стержня несколько выше, чем на его боковой поверхности. Создаются условия, при которых поры остаются внутри стержня и значительная часть из них участвует в образовании границ между кристалликами. В том случае, если градиент температуры был перпендикулярен оси стержня, большая часть пор покидала стержень через его более горячую поверхность, а границы между кристалликами содержали меньшее количество микропор. Естественно предположить, что в случае зонной плавки создаются менее благоприятные условия для прохождения тока вдоль стержня. Прохождению тока препятствуют некогерентность границ между блоками, наличие в них большого количества кислорода и существование несверхпроводящих фаз в объеме стержня. Несколько иная ситуация в случае зарождения кристалликов на боковой поверхности стержня. В этом случае пор между кристалликами меньше, границы между ними более когерентны и ориентация кристалликов в стержне, границ между кристалликами, способствует прохождению тока критической плотностью, что видно из вольт-амперных характеристик (рис. 2). Наличие несверхпроводящих фаз проявляется также в поведении зависимости падения напряжения на стержнях от температуры (рис. 1). С увеличением тока через стержень растут потери в нем, что приводит к смещению температуры перехода в сверхпроводящее состояние в область более низких температур.

Список литературы

- Muralidhar M., Sakai N., Jirsa M. et al. // Supercond. Sci. Technol. 2003. V. 16. L46–L48.
- [2] Kovalev L.K., Oswald B., Gawalek W. et al. // IEEE Transaction on Applied Superconductivity. 1999. V. 9. N 2. P. 1201–1204.
- [3] Maehata K., Taino T., Mizokami M. et al. // IEEE Transactions on Applied Superconductivity. 1999. V. 9. N 2. P. 1281–1284.
- [4] Vorobiev A.K., Drozdov Y.N., Gusev S.A. et al. // Supercond. Sci. Technol. 1999.
 V. 12. P. 908–911.
- [5] Churin S.A. // Supercond. Sci. Technol. 2004. V. 17. P. 164-168.
- [6] Мейлихов Е.З. // УФН. 1993. Т. 163. N З. С. 27-54.
- [7] Alarco J.A., Riches J.D., Barry J.C. // Physica C. 1999. V. 325. P. 181-200.
- [8] Aswal D.K., Shinmura M., Hayakawa Y., Kumagawa M. // Journal of Crystal Growth. 1999. V. 197. P. 379–382.