06 О возможности создания образцовых поверочных сопротивлений на основе монокристаллов Ge и Si, выращенных в невесомости

© А.В. Картавых, В.В. Раков

Институт химических проблем микроэлектроники (ИХПМ), Москва E-mail: karta@girmet.ru

Поступило в Редакцию 20 июня 2006 г.

Рассмотрены требования к созданию образцовых поверочных сопротивлений (ОПС), необходимых для калибровки современных микрозондовых комплексов промышленной диагностики электрофизической однородности элементарных полупроводников. Экспериментально доказана возможность создания прототипов ОПС с неоднородностью распределения удельного электрического сопротивления 1% на основе монокристаллов Ge, легированных Sb, выращенных методом бестигельной зонной плавки в условиях микрогравитации на борту спутника "Фотон". Кратко охарактеризованы основные факторы, влияющие на однородность легирования кристаллов Ge и Si из собственных расплавов в условиях орбитального космического полета, а также использованные приемы оптимизации технологического процесса.

PACS: 81.10.Fq, 81.10.Mx, 61.72.Tt, 61.72.Ss

Повышение однородности распределения легирующей примеси является одной из важнейших задач технологии полупроводниковых материалов. Высокие требования по кристаллохимической и электрофизической однородности предъявляются к материалам образцовых поверочных сопротивлений (ОПС), которые используются для поверки четырехзондовых установок, применяемых для контроля удельного сопротивления полупроводников. Стандартизованные ОПС представляют собой монокристаллические шайбы Si диаметром 30 mm и толщиной не менее 6 mm с различным удельным электрическим сопротивлением (ρ), причем величина их неоднородности, рассчитываемая по относительному среднеквадратичному отклонению измеряемого ρ (standart deviation,

70

 $StD(\rho)$) должна быть меньше чувствительности четырехзондового метода (3 ÷ 5%).

Наиболее жесткие критерии электрофоизической однородности требуются при создании ОПС для калибровки промышленных измерительно-вычислительных комплексов ASR-100C, SSM-150, SSM-2000, использующих микрозондовый сканирующий шаговый метод сопротивления растекания (spreading resistance, R_S) для характеризации профилей ρ с линейным разрешением порядка единиц микрон. В этом случае случайная погрешность измерения абсолютных величин о связана с невоспроизволимостью плошали контакта микрозонд-полупроводник при единичном касании, и строгое определение ее величины невозможно из-за отсутствия более прецизионных независимых средств измерения ρ . На практике величину аппаратурной погрешности измерения неоднородности оценивают по наименьшему воспроизводимому значению наблюдаемого $StD(\rho)$ на наиболее однородных имеющихся в наличии ОПС. Кроме того, для элементарных полупроводников — Ge и Si — необходимы наборы ОПС *n*- и р-типов проводимости, чтобы иметь возможность прямой конвертации профилей ρ в профили распределения концентрации ионизованных доноров или акцепторов по кривым Ирвина-Тэрбера-Мазетти (Irvin-Thurber-Masetti) согласно стандарту ASTM F 723.

Стандартные ОПС, полученные методом металлургического легирования при выращивании монокристаллов методом Чохральского (Czochralski), имеют параметр электрофизической неоднородности StD(ρ) не лучше 3 ÷ 4%, что определяет уровень погрешности калибровки наиболее прецизионного измерительного оборудования. Наилучшие ОПС изготавливаются методом нейтронного легирования пластин, вырезанных из особо чистых монокристаллов и имеют неоднородность StD(ρ) = 0.7 ÷ 1.0% [1]. Однако фундаментальные ограничения трансмутационного легирования позволяют создавать ОПС лишь одного типа проводимости, в соответствии со следующими ядерными реакциями [2]: 1) {Si²⁸, Si²⁹}(n, γ) \rightarrow {Si²⁹, Si³⁰}; Si³⁰₁₄(n, γ)Si³¹₁₄ $\stackrel{\beta^-}{\longrightarrow}$ P³¹₁₅ (в итоге *n*-Si,

легированный фосфором); 2) $Ge_{32}^{70}(n, \gamma)Ge_{32}^{71} \xrightarrow{K - 3axBaT} Ga_{31}^{71}$ (в итоге *p*-Ge, легированный галлием). Таким образом методом ядерного дегирования не удается создать

Таким образом, методом ядерного легирования не удается создать эталоны однородности Ge электронного и Si дырочного типов проводимости.

Рис. 1. *а* — монокристалл Ge(Sb), выращенный методом бестигельной зонной плавки на спутнике серии "Фотон", затравка слева; *b* — прототип ОПС с контактами Холла (Hall) на торцах шайбы; *c* — распределение удельного сопротивления по диаметру прототипа ОПС, выполненное методом сопротивления растекания на измерительном комплексе ASR-100C с разрешением 50 μ m. Среднее $\rho = 5.116 \Omega \cdot \text{сm}$ с неоднородностью распределения StD(ρ) = 1.0% на участке 2 < *D* < 14 mm.

Возможности экспериментальных технологий выращивания монокристаллов на борту спутников-автоматов в условиях микрогравитации позволяют преодолеть эти ограничения. В результате практических работ по космическому материаловедению в ИХПМ/Гиредмет получены, исследованы и сертифицированы на лабораторном уровне эталонные монокристаллы *n*-Ge с легированием Sb, обладающие необходимым комплексом свойств для создания прототипов ОПС с неоднородностью ρ , равной 1% (рис. 1). Монокристаллы выращены на специализи-

Рис. 2. Монокристаллическая заготовка Ge(Sb), использованная как сырье для зонной перекристаллизации на орбите.

рованных установках "Зона-4" [3] методом бестигельной зонной плавки (БЗП) на борту космических аппаратов серии "Фотон". В качестве сырьевых заготовок для перекристаллизации использованы химически полированные монокристаллические цилиндрические стержни легированного Ge диаметром 16 и длиной 110 mm (рис. 2).

Необходимым условием для роста экстраоднородных монокристаллов из расплава на орбите является предельное ослабление термогравитационной конвекции в расплаве при уровнях остаточной гравитации порядка $(3 \div 6) \cdot 10^{-6}$ от земного значения, характерных для орбит спутников "Фотон".

В условиях, максимально приближенных к абсолютной невесомости, гидродинамика объемного расплава становится чрезвычайно чувствительной к аппаратурным вибрациям и нестабильностям работы механического привода самих ростовых установок орбитального базирования. В соответствии с проведенным анализом гидродинамических критериев Грасгофа (Grashoff) и Рэлея (Raykeigh), ростовые процессы с узкой зоной расплава в этом случае более устойчивы, и использование зонной плавки предпочтительнее метода Бриджмена (Bridgman).

Ростовые режимы, близкие к диффузионно-контролируемым, приводят к формированию в расплаве у фронта кристаллизации аномально протяженных переходных слоев толщиной $3 \div 6 \text{ mm}$ [4,5], примесный профиль которых также чувствителен к воздействию переменных микроускорений (μ g). Уровень электрофизической микронеоднородности растущего кристалла при этом существенно зависит от физикохимических характеристик используемой лигатуры. Ключевыми параметрами являются равновесный коэффициент распределения примеси k_0 и коэффициент ее диффузии в расплаве D_m вблизи температуры плавления. Как показано в [6], степень неравномерности вхождения легирующей примеси в кристалл из-за конвективного размытия ее концентрационного профиля в переходном слое при малых стохастических колебаниях μ g пропорциональна "коэффициенту микрогравитационной чувствительности" K_S :

$$K_{S} = \frac{dk_{\text{eff}}}{d\delta} = \frac{u \cdot k_{0} \cdot (1 - k_{0}) \cdot \exp\left(-\frac{u\delta}{D_{m}}\right)}{D_{m} \cdot \left[k_{0} + (1 - k_{0}) \cdot \exp\left(-\frac{u\delta}{D_{m}}\right)\right]^{2}},$$
(1)

где k_{eff} — эффективный коэффициент распределения примеси в данных ростовых условиях, δ — толщина переходного слоя, u — скорость роста монокристалла. В соответствии с формулой (1) при равных уровнях μ g на борту космического аппарата микронеоднородность распределения "мелкой" примеси по длине в монокристаллах Ge будет снижаться в ряду Ge(Ga) \rightarrow Ge(P) \rightarrow Ge(As) \rightarrow Ge(Sb) \rightarrow Ge(In), а в монокристаллах Si — в ряду Si(Al) \rightarrow Si(As) \rightarrow Si(B) \approx Si(P) \rightarrow Si(Sb) \rightarrow Si(Ga) \rightarrow \rightarrow Si(In).

При БЗП вблизи свободной поверхности расплавленной зоны развивается негравитационная конвекция Марангони (Marangoni), имеющая две компоненты — термокапиллярную и концентрационную, что приводит к дополнительному локальному размытию погранслоя в этих областях и в итоге к появлению краевых эффектов возрастания ρ в поперечном сечении кристалла (заметны на рис. 1, *c*). Основные пути уменьшения этих эффектов — снижение градиентов температуры в расплавленной зоне; использование относительно слаболегированных расплавов; выбор примеси с низкой поверхностной активностью в расплаве [7].

При предельно малых внешних возмущающих воздействиях, малых скоростях роста и температурных градиентах в расплаве механизм кристаллизации в невесомости приближается к термодинамически равновесному, что приводит к структурной самоорганизации в переходном погранслое, формированию мультиатомных примесьсодержащих ростовых единиц (кластеров) и в целом более однородному вхождению примеси в полупроводниковый кристалл [8,9].

Наилучшие монокристаллы с точки зрения однородности легирования выращены на орбите при одновременном соблюдении следующих параметров зонной плавки: отношение длины расплавленной зоны к диаметру (aspect ratio) $1 \div 1.2$; скорость трансляции зоны u = 5 mm/h; осевой градиент температуры в зоне расплава $5 \div 10$ K/cm; исходная концентрация легирующей примеси (Sb) в расплаве $\sim 10^{18}$ at/cm³. Перспективы продолжения работ связаны с использованием орбитальной ростовой аппаратуры "Полизон" нового поколения [10], позволяющей выращивать монокристаллы необходимого диаметра 30 mm с применением более совершенных средств бортовой диагностики.

Работа поддержана грантом РФФИ 06-02-16597.

Список литературы

- Кожух М.Л., Шлимак И.С., Федоров В.В., Юрова Е.С. // Письма в ЖТФ. 1985. Т. 11. В. 3. С. 129–131.
- [2] Легирование полупроводников методом ядерных реакций / Под ред. Л.С. Смирнова Новосибирск: Наука, 1981. 181 с.
- [3] Бармин И.В., Сенченков А.С. // Изв. РАН. Механика жидкости и газа. 1994. № 5. С. 37–45.

- [4] Картавых А.В., Копелиович Э.С., Мильвидский М.Г., Раков В.В. // Кристаллография. 1998. Т. 43. № 6. С. 1136–1141.
- [5] Картавых А.В., Копелиович Э.С., Мильвидский М.Г., Раков В.В. // Кристаллография. 2000. Т. 45. № 1. С. 167–174.
- [6] Картавых А.В. // Кристаллография. 2000. Т. 45. № 6. С. 1108–1113.
- [7] Мильвидский М.Г., Картавых А.В., Раков В.В. // Поверхность. 2001. № 9. С. 17–35.
- [8] Ginkin V., Kartavykh A., Zabudko M. // J. Cryst. Growth. 2004. V. 270. N 3–4. P. 329–339.
- [9] Котов С.В., Лютиков А.Р., Хухрянский Ю.П. и др. // Письма в ЖТФ. 2002. Т. 28. В. 14. С. 15–18.
- [10] Senchenkov A.S., Egorov A.V., Barmin UI.V., Sichinger P. Automatic POLIZON facility for space experiments on the Russian FOTON satellite // Proc. of First Int. Symp. on Microgravity Research and Applications in Physical Sciences and Biotechnology. Sorrento, Italy. ESA publ. SP-454. 2000. V. 2. P. 1031–1037.