01;05 К теории дифракции рентгеновских лучей на латеральном кристалле с упруго изогнутыми атомными плоскостями

© В.И. Пунегов, С.И. Колосов, К.М. Павлов

Коми научный центр УрО РАН, Сыктывкар, Россия Сыктывкарский государственный университет, Россия Centre for Synchrotron Science, School of Physics, Monash University, Melbourne, Victoria 3800, Australia E-mail: punegov@syktsu.ru

Поступило в Редакцию 3 апреля 2006 г.

В рамках кинематического приближения разработана теория дифракции рентгеновских лучей на латеральном кристалле с упруго изогнутыми атомными плоскостями. Получены аналитические решения для когерентного и диффузного рассеяния применительно к трехосевой рентгеновской дифрактометрии. Проведено численное моделирование углового распределения интенсивности когерентного и диффузного рассеяния вблизи узла обратной решетки. Показано, что дифракционная картина от кристалла с трапецеидальным сечением и упруго изогнутыми атомными плоскостями имеет вид "бабочки", что ранее наблюдалось экспериментально [4].

PACS: 61.10.-i

С успехами развития методов литографии [1] и селективного эпитаксиального роста [2] появились уникальные возможности создания латеральных структур элементной базы современной опто- и наноэлектроники. Преимущественно такие низкоразмерные структуры, в частности квантовые нити, создают в виде поверхностных решеток (см. [3] и приведенную в ней литературу), что облегчает их исследование с помощью дифракции рентгеновских лучей из-за значительного увеличения интенсивности рассеяния. С другой стороны, латеральная периодичность является причиной формирования на дифракционной картине сателлитной структуры, которая усложняет получение информации о форме и внутреннем строении отдельного латерального объекта.

В последние годы наблюдается рост экспериментальных работ по дифракции рентгеновских лучей на одиночных латеральных структурах,

65

размеры которых варьируются от нескольких микрон до сотен нанометров [2,4]. Как правило, для исследования наноструктур используется синхронное излучение [4]. Теоретический анализ дифракции на таких структурах проводится лишь на основе численного метода конечных элементов [4]. К сожалению, такой подход весьма ограничен и не дает ясного физического представления о самом процессе дифракции, тем более, когда рассматривается когеретное и диффузное рассеяние на латеральных структурах.

Целью данной работы является разработка теории дифракции на латерально ограниченном кристалле с упруго изогнутыми атомными проскостями. Упругий изгиб плоскостей может быть вызван разными причинами, в частности, распределением химических компонент, формой кристалла, внешними воздействиями и т.д. Рассмотрение проводится с учетом когерентного и диффузного рассеяния применительно к трехосевой рентгеновской дифрактометрии.

В кинематическом приближении для амплитуды когерентно рассеянной волны от кристалла толщиной *l* в обратном пространстве получено общее решение [5], которое для трехосевой дифрактометрии с учетом пренебрежения эффектами преломления и поглощения рентгеновских лучей в среде, может быть преобразовано и записано в виде

$$E_{h}^{c}(q_{x},q_{z}) = \frac{ia_{h}f}{\sqrt{2\pi}} \int_{0}^{l} dz e^{iq_{z}z} \int_{\Omega_{1}(z)}^{\Omega_{2}(z)} dx e^{iq_{x}x} \Phi(x,z),$$
(1)

где коэффициент a_h определяет отражательную способность кристалла [5]. При наличии дефектов кристаллической структуры функция атомных смещений $\mathbf{u}(\mathbf{r})$ представляется в виде суммы усредненной и флуктуационной части $\mathbf{u}(\mathbf{r}) = \langle \mathbf{u}(\mathbf{r}) \rangle + \delta \mathbf{u}(\mathbf{r})$. В выражении (1) фазовый фактор кристалла $\Phi(x, z) = \exp(i\mathbf{h}\langle \mathbf{u}(x, z)\rangle)$ описывает крупномасштабные (неслучайные) деформации в объеме кристалла. Здесь \mathbf{h} вектор обратной решетки, причем $h = 2\pi/d_{hkl}$, где d_{hkl} — межплоскостное расстояние. Хаотические нарушения периодической структуры кристалла характеризуются статическим фактором Дебая-Валлера $f = \langle \exp(i\mathbf{h}\delta\mathbf{u}) \rangle$. Вектор **q** задает отклонение вектора рассеяния $\mathbf{k}_h - \mathbf{k}_0$ от узла обратной решетки \mathbf{h} , где $\mathbf{k}_{0,h}$ — волновые векторы падающего и дифракционного рентгеновского пучка. Мы рассмотрим дифракцию в латеральном кристалле с трапецеидальным сечением (рис. 1). Такая

Рис. 1. Поперечное сечение латерального кристалла с упруго изогнутыми атомными плоскостями.

форма сечения при разных значениях параметров a, b и c преобразуется в треугольник, прямоугольник и параллелограмм. Пределы интегрирования в (1) представимы в виде: $\Omega_1(z) = -(az/l + b/2)$ и $\Omega_2(z) = cz/l + b/2$.

Поле атомных смещений в случае эквидистантно изогнутых отражающих атомных плоскостей запишем как $\mathbf{h}\langle \mathbf{u}(x,z)\rangle = -\pi x^2/l_1^2$, где $l_1 = \sqrt{Rd_{hkl}/2}$ — размер первой зоны Френеля. По аналогии с оптикой, на границе этой зоны имеет место фазовый сдвиг дифракционной волны на π из-за изгиба отражающих атомных плоскостей, R — радиус кривизны атомных плоскостей. Решение для амплитуды когерентно рассеянной волны от латерального кристалла с изогнутыми атомными плоскостями имеет вид

$$E_h^c(q_x, q_z) = \frac{ia_h f l_1}{\sqrt{2}} \exp\left(iq_x^2 l_1^2 / (4\pi)\right) \left(g_2(q_x, q_z) - g_1(q_x, q_z)\right).$$
(2)

Здесь

$$g_{1,2}(q_x, q_z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dz \theta(l-z) \theta(z) e^{iq_z z} F(u_{1,2})$$

— Фурье-образы произведений интегралов Френеля $F(u) = \int_{0}^{u} e^{i(\frac{\pi}{2}\tau^{2})} d\tau$

и функций Хевисайда $\theta(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$ [6]. Безразмерные переменные $u_{1,2} = (\sqrt{2}/l_1) \left(\Omega_{1,2}(z) - q_x l_1^2/(2\pi)\right)$ зависят от значения q_x .

В случае $l_1 \to \infty$, что соответствует предельному переходу к модели кристалла с планарными атомными плоскостями, решение (2) преобразуется к виду

$$E_h^c(q_x, q_z) = \frac{f a_h l}{\sqrt{2\pi} q_x} e^{i\varphi_0} \left(e^{i\varphi_t} \operatorname{sinc}(q_c) - \operatorname{sinc}(q_a) \right),$$
(3)

где $\operatorname{sinc}(x) = \operatorname{sin}(x)/x$, $q_c = (q_z l + q_x c)/2$, $q_a = (q_z l - q_x a)/2$, $S_t = ((a+c)/2+b)l$ — площадь сечения трапецеидального кристалла, $\varphi_0 = (q_z l - q_x(a+b))/2$, $\varphi_i = q_x S_t/l$. Решение (3) при $q_z = 0$ согласуется с результатом для случая двухкристальной дифрактометрии [7].

В трехосевой дифракционной схеме измерений угловое распределение интенсивности диффузного рассеяния

$$I_{h}^{d}(q_{x}, q_{z}) = |a_{h}|^{2}(1 - f^{2}) \int_{0}^{1} dz \int_{\Omega_{1}(z)}^{\Omega_{2}(z)} dx \tau(x; q_{x}, q_{z})$$

определяется корреляционной площадью

$$\tau(x;q_x,q_z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\rho_z e^{iq_z\rho_z} \int_{-\infty}^{+\infty} d\rho_x e^{i\left(q_x - \frac{2\pi x}{l_1^2}\right)\rho_x} e^{-i\frac{\pi\rho_x^2}{l_1^2}} G(\rho_x,0,\rho_z).$$

Случайные искажения периодической структуры кристалла задаются корреляционной функцией $G(\rho_x, 0, \rho_z)$ [5]. Введем модель хаотических нарушений структуры, описываемых корреляционной функцией $G(\rho_x, 0, \rho_z) = \exp[-\pi((\rho_x/\tau_x)^2 + (\rho_z/\tau_z)^2)]$, где $\tau_{x,z}$ имеют смысл корреляционных длин Като [8] в латеральном и вертикальном направлении соответственно. Предполагая, что $\tau_x \ll l_1$, для корреляционных длин $\tau(x;q_x,q_z) = (1/2\pi)\tau(x;q_x)\tau(q_z)$. Здесь вертикальная длина корреляции $\tau(q_z) = \tau_z \exp(-(q_z^2\tau_z^2/4\pi))$ не зависит от координат. Латеральная корреляционная длина $\tau(x;q_x) = \tau_x \exp(-(q_x - 2\pi x/l_1^2)^2\tau_x^2/4\pi)$ имеет зависимость от x из-за изгиба атомных плоскостей. Интенсивность диффузного рассеяния для выбранной модели корреляционной функции

запишется как

$$I_{h}^{d}(q_{x}, q_{z}) = (|a_{h}|^{2}/4\pi)(1 - f^{2})\tau_{z}l_{1}^{2}\exp\left(-(q_{z}^{2}\tau_{z}^{2}/4\pi)\right)$$
$$\times \int_{0}^{l} dz \left[\operatorname{erf}(\beta_{2}) - \operatorname{erf}(\beta_{1})\right], \tag{4}$$

где $\beta_{1,2} = \frac{\tau_x}{2\sqrt{\pi}} \left(2\pi\Omega_{1,2}(z)/l_1^2 - q_x \right)$, $\operatorname{erf}(b) = \frac{2}{\sqrt{\pi}} \int_0^b d\beta e^{-\beta^2}$ — интеграл

вероятностей [6].

На основе решений (2)-(4) проведено численное моделирование углового распределения интенсивностей когерентного и диффузного рассеяния от латерального кристалла GaAs вблизи узла обратной решетки (004). В расчетах использованы данные для перпендикулярно поляризованного CuK_{α} излучения.

На рис. 2 показаны карты распределения интенсивности когерентного рассеяния в обратном пространстве от латеральных кристаллов с поперечными сечениями в виде трапеции (a, b), прямоугольника (c) и параллелограмма (d). Контуры равной интенсивности представлены в логарифмическом масштабе, отношение интенсивностей между соседними линиями составляет 10^{0.5}. Влияние упругого изгиба на дифракционную картину от кристалла с трапецеидальным сечением с размерами $a = b = c = l = 100 \,\mathrm{nm}$ демонстрируют рисунки 2, а и b. Распределение интенсивности когерентного рассеяния в обратном пространстве от латерального кристалла с планарными атомными плоскостями (рис. 2, a) имеет симметричную форму в виде трех полос, пересекающихся в начале координат. Наличие наклонных полос обусловлено положением боковых сторон трапеции. Упругий изгиб отражающих атомных плоскостей, соответствующий $l_1 = 100$ nm, приводит к уширению центральной полосы, нарушению симметрии, а сама дифракционная картина приобретает вид "бабочки". Такое распределение интенсивности рассеяния наблюдалось экспериментально при исследовании наноразмерных островков SiGe [4]. Карты распределения интенсивности рассеяния от латеральных кристаллов с упруго изогнутыми плоскостями $(l_1 = 100 \text{ nm})$ с сечением в виде прямоугольника (a = c = 0, b = 200 nm, l = 100 nm) и параллелограмма (a = -c = 100 nm, b = 200 nm, l = 100 nm) показаны на рис. 2, с и d соответственно. Поскольку прямоугольное сечение не имеет наклонных

Рис. 2. Карты распределения интенсивности когерентного рассеяния в обратном пространстве от латеральных кристаллов с поперечными сечениями в виде трапеции (a, b), прямоугольника (c) и параллелограмма (d).

сторон, распределение интенсивности рассеяния формируется в виде двух перпендикулярных полос, при этом вертикальная полоса уширена из-за атомных плоскостей. Интересно отметить, что в случае кристалла с планарными плоскостями и с сечением в виде палаллелограмма дифракционная картина состоит из двух полос, так как наклоны боковых сторон параллелограмма совпадают. Упругий изгиб отражающих плоскостей приводит к расщеплению наклонной полосы, что иллюстрируется рис. 2, *d*.

Рис. 3. Карты распределения интенсивности полного (когерентного и диффузного) рассеяния в обратном пространстве от кристалла с трапецеидальным сечением с выпуклым (*a*) и вогнутым (*b*) изгибом отражающих атомных плоскостей.

Влияние диффузного рассеяния на дифракционную картину от латерального кристалла с изогнутыми атомными плоскостями показано на рис. 3. Расчеты выполнены по формуле (4) с использованием следующих структурных характеристик: корреляционные длины Като $\tau_x = \tau_z = 10$ nm, статистический фактор Дебая-Валлера f = 0.8. Остальные параметры совпадают с данными вычисления когерентного рассеяния кристалла с трапецеидальным сечением (рис. 2, *b*). Смена направления упругого изгиба атомных плоскостей кристалла с трапецеидальным сечением (рис. 2, *b*). Смена направления (пунктирная линия на рис. 1) приводит к инверсии дифракционной картины, что проиллюстрировано на рис. 3.

Таким образом, разработанная теория позволяет описать когерентное и диффузное рассеяние от латерального кристалла с упруго изогнутыми атомными плоскостями. Обнаруженные в результате численного моделирования особенности дифракции от латеральных структур будут полезны при выполнении экспериментальных измерений.

Работа выполнена при финансовой поддержке целевой программы "Развитие научного потенциала высшей школы" (проект РНП.2.1.1.3425) и Australian Research Council's Discovery funding scheme (projects № DP0556840, DP0556492).

Список литературы

- Xia Y., Rogers J.A., Paul K.E., Whitesides G.M. // Chem. Rev. 1999. V. 99. P. 1823–1848.
- [2] Nakashima K., Kawaguchi Y. // J. Appl. Phys. 2001. V. 90. P. 3255-3262.
- [3] Baumbach T., Lubbert D., Gailhanou M. // J. Appl. Phys. 1999. V. 87. P. 3744–3758.
- [4] Wiebach Th., Schmidbauer M., Hanke M., Raidt H., Köhler R., Wawra H. // Phys. Rev. B. 2000. V. 61. P. 5571–5578.
- [5] Nesterets Ya.I., Punegov V.I. // Acta Cryst. A. 2000. V. A56. N 6. P. 540-548.
- [6] Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган. М.: Наука, 1979. 832 с.
- [7] De Caro L., Sciacovelli P., Tapfer L. // Appl. Phys. Lett. 1994. V. 64. P. 34-36.
- [8] Kato N. // Acta Cryst. A. 1980. V. A36. P. 763-769.