01;06

Влияние сильного электрического поля на высокочастотные свойства спиральной квантовой проволоки

© О.П. Волосникова, Д.В. Завьялов, С.В. Крючков

Волгоградский государственный педагогический университет E-mail: sed@fizmat.vspu.ru

Поступило в Редакцию 21 марта 2006 г.

Предсказаны новые свойства спиральной квантовой проволоки, которые должны проявить себя при воздействии на нее постоянного электрического поля. В этом случае происходит своеобразное квантование электронного энергетического спектра, который приобретает минизонную структуру, присущую квантовой сверхрешетке. Изучены высокочастотные свойства спиральной квантовой проволоки. Выявлена пороговая зависимость высокочастотной проводимости от напряженности постоянного поля.

PACS: 81.07.Vb

В последнее время появились сообщения о создании различного рода и формы наноструктур, обладающих уникальными электрическими и оптическими свойствами [1–4]. Одним из таких объектов является спиральная квантовая проволока (СКП), оптические свойства которой описаны в [5–7]. В [7], в частности, показано, что спиральная геометрия объекта может привести к искусственному увеличению волнового вектора падающего света. При этом становятся разрешенными переходы между состояниями свободного электрона, что приводит к бесстолкновительному поглощению электромагнитного поля.

В настоящей работе предсказаны новые свойства СКП, которые должны, на наш взгляд, проявить себя при воздействии на СКП постоянного электрического поля. В этом случае, как показано ниже, происходит своеобразное квантование электронного энергетического спектра, который приобретает минизонную структуру, присущую квантовой сверхрешетке (СР). Подобная модификация энергетического спектра возможна и в углеродной нанотрубке, помещенной в поперечное

13

Рис. 1. Спиральная квантовая проволока.

электрическое поле [8]. Нами, кроме того, изучены высокочастотные свойства СКП в условиях влияния сильного электрического поля.

Рассмотрим тонкую СКП постоянного (круглого) сечения с геометрией, представленной на рис. 1.

Подобная проволока описывается следующим параметрическим уравнением

$$r = (R\cos(kq), R\sin(kq), \eta q).$$
(1)

Здесь R — радиус спирали, q — координата, отсчитываемая вдоль проволоки, η — отношение шага спирали к длине ее витка, длина витка спирали равна $d = 2\pi/|k|$, знак k определяет направление спирали (плюс соответствует левой спирали); ось спирали направлена вдоль z.

Гамильтониан искривленной проволоки в отсутствие внешних воздействий выведен в [5,6]. Для спиральной проволоки в пренебрежении спином и сдвигом дна зоны из-за наличия кривизны и кручения электроны описываются квадратичным одномерным гамильтонианом $H = p^2/2m$, где $p = -i\partial/\partial q$ — оператор импульса электрона вдоль проволоки (здесь и далее мы положим $\hbar = 1$). Переходами между уровнями размерного квантования мы будем пренебрегать и считать, что электроны находятся в самой нижней зоне.

Приложим к проволоке постоянное электрическое поле E вдоль оси x. При этом на одномерные электроны, движущиеся вдоль проволоки, действует тангенциальная компонента поля $E_t = -kRE \sin(kq)$.

Уравнение Шредингера для волновой функции электронов, описывающей их движение вдоль проволоки, будет иметь вид уравнения Матье

$$\frac{1}{2m}\frac{d^2\varphi_p}{dq^2} + \left(\varepsilon_p - eER\cos(kq)\right)\varphi_p = 0.$$
(2)

В (2) обозначено $\varphi_p = u_p(q) \exp(ipq)$ — интересующее нас решение $(u_p(q) - блоховский множитель), \varepsilon_p$ — энергия электрона с квазиимпульсом *p*. В математической физике [9] подробно исследованы свойства уравнения Матье. Важно следующее обстоятельство: собственные значения ε_p образуют зонный (минизонный) спектр. Таким образом, бесконечно широкая одномерная зона проводимости разбивается на подзоны конечной ширины. Получается некоторый аналог квантовой СР с периодом $2\pi/|k|$. Существенным отличием данной СР от известных ранее СР является принципиальная возможность управлять шириной минизоны проводимости (и одновременно шириной запрещенной зоны) путем изменения напряженности приложенного постоянного электрического поля.

В качестве примера на рис. 2 представлены графики зависимости ширины первых запрещенной и разрешенной минизон от напряженности электрического поля, построенные при следующих типичных значениях параметров системы: $m = 2 \cdot 10^{-29}$ g, $R = 10^{-6}$ cm, $ds = 10^{-6}$ cm (ds — шаг спирали).

Отметим, что для достаточно четкого проявления описанного выше минизонного спектра должно выполняться условие $E_g \gg \hbar/\tau$ (E_g — ширина запрещенной минизоны, τ — время релаксации носителей тока), которое накладывает ограничение снизу на величину напряженности постоянного поля. При $\tau \sim 10^{-11}$ s указанное неравенство выполняется для полей $E \ge 10$ SGS unit.

Квантование энергетического спектра электронов в СКП может проявить себя при исследовании высокочастотных (ВЧ) свойств проволоки. В частности, должна наблюдаться своеобразная зависимость ВЧ-проводимости $\sigma(\omega, k)$ от напряженности постоянного поля.

Рассмотрим сначала электропроводность СКП, обусловленную внутриминизонными переходами носителей тока под действием слабой электромагнитной волны. Для ее вычисления можно воспользоваться методом Кубо, как это сделано в [7], где рассчитывалась высокочастотная проводимость СКП в отсутствие сильного постоянного поля.

Рис. 2. Графики зависимости ширины первых запрещенной (*a*) и разрешенной (*b*) минизон от напряженности электрического поля.

При этом проводимость с учетом пространственной дисперсии (и в пренебрежении рассеиванием носителей) может быть найдена по формуле

$$\sigma_{in}(\omega,k) = \frac{2\pi e^2}{m^2 L} \sum_{p,p'} \frac{f(\varepsilon_p) - (\varepsilon_{p'})}{\varepsilon_{p'} - \varepsilon_p} \left| (U)_{p,p'} \right|^2 \delta(\varepsilon_p - \varepsilon_{p'} - \omega), \quad (3)$$

где $f(\varepsilon)$ — функция распределения, $U = (pe^{ikq} + e^{ikq}p)/2$, L — полная длина спирали.

В [7] показано, что благодаря неоднородности действующей на одномерные электроны тангенциальной составляющей электромагнитного поля становится возможным поглощение света свободными носителями тока и, как следствие, возникает внутриминизонный ток, обусловленный этим поглощением. В нашем случае постоянное электрическое поле, модифицирующее спектр электронов, "запрещает" подобное поглощение. В самом деле, из формулы (3) видно, что в выражение для проводимости входит множитель $\delta(\varepsilon_{p+k} - \varepsilon_p - \omega)$, выражающий закон сохранения энергии. Однако в нашем случае $\varepsilon_{p+k} = \varepsilon_p$, так как k

является вектором обратной решетки для минизон, индуцированных постоянным электрическим полем.

Рассмотрим далее ток, обусловленный межминизонными переходами под действием слабой электромагнитной волны с частотой $\omega \sim E_g$ (при выбранных выше параметрах $\omega \sim 10^{12} \, {\rm s}^{-1}$). Электропроводность за счет межминизонных переходов можно представить так

$$\sigma_{ext}(\omega,k) = \frac{2\pi e^2}{m^2 L} \sum_{p,p'} \frac{f(\varepsilon_p^2) - f(\varepsilon_{p'}^1)}{\varepsilon_{p'}^1 - \varepsilon_p^2} |(U)_{p,p'}|^2 \delta(\varepsilon_p^2 - \varepsilon_{p'}^1 - \omega), \quad (4)$$

где ε_p^2 , $\varepsilon_{p'}^1$ — энергии носителей тока. Верхние индексы 1 и 2 здесь и далее указывают на принадлежность величины к первой и второй минизонам проводимости соответственно.

Очевидно, что, меняя напряженность постоянного поля, мы меняем и E_g и при какой-то напряженности энергии фотона не хватит для переброса электрона в вышележащую минизону. При этом высокочастотный ток в выбранной нами ситуации (в отсутствие переходов между уровнями размерного квантования и пренебрежении процессами второго порядка малости по взаимодействию света с электроном) исчезнет. Таким образом, зависимость высокочастотной электропроводности от напряженности приложенного постоянного поля носит пороговый характер.

Для количественной оценки эффекта примем следующие приближения: будем считать электронный газ невырожденным, а заполненной только нижнюю минизону; спектры носителей тока в минизонах примем в виде

$$\varepsilon_p^1 = \Delta_1 \left(1 - \cos(2\pi p/k) \right), \quad \varepsilon_p^2 = \Delta_2 \left(1 - \cos(2\pi p/k) \right). \tag{5}$$

Кроме того, в волновой функции электрона $\varphi_p = u_p(q) \exp(ipq)$ положим $u_p(q) = 1$. При этом выражение для межминизонной высокочастотной электропроводности имеет вид

$$\sigma_{ext}(\omega,k) = \sigma_0 \int_{-\pi}^{\pi} dx (x+\pi)^2 \exp(\Delta_1/T) \delta(\cos(x) - \alpha).$$
(6)

Здесь $\sigma_0 = 2\pi e^2 n_s a(0) (d^2 \omega m^2 I_0(\Delta_1 T^{-1}) |\Delta_1 - \Delta_2|)^{-1}$, n_s — линейная концентрация носителей тока, $I_0(x)$ — модифицированная функция

Рис. 3. График зависимости электропроводности от частоты электромагнитного поля.

Бесселя первого рода нулевого порядка, *Т* — температура, выраженная в энергетических единицах;

$$\alpha = \left((E_g + \Delta_2 + \Delta_1) - \omega \right) / (\Delta_2 - \Delta_1).$$

Из (6) видно, что проводимость не равна нулю только в случае $-1 < \alpha < 1$. Таким образом, расчет подтверждает качественные рассуждения о пороговом характере зависимости высокочастотного тока от частоты электромагнитной волны.

Приведем график зависимости электропроводности от частоты электромагнитного поля, полученный с помощью численного анализа (6), при выбранных выше параметрах системы и T = 10 К. В этом случае имеем следующую оценку: $\sigma_0 \sim 10^3$ cm²/s при $n_s \sim 10^5$ sm⁻¹. Численная оценка тока J, текущего через одну квантовую проволоку, дает $J \sim 10^{-8}$ А при $E \approx 1$ SGS unit.

Учитывая, что с электропроводностью связан коэффициент поглощения, отметим, что экспериментально данный эффект может наблюдаться в виде пороговой зависимости поглощения электромагнитного

Из рис. 3 видно, что при полях $\sim 10^3\,V/cm$ порог поглощения относится к терагерцовой области частот.

Работа поддержана грантом регионального конкурса ABO-РФФИ "Поволжье 2004", регистрационный номер № 04-02-96505.

Список литературы

- [1] Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем. С.-Петербург: Наука, 2001.
- [2] Prinz V.Ya., Seleznev V.A., Gutakovsky A.K. et al. // Physica. 2000. V. E6. P. 828.
- [3] Prinz V.Ya, Grutzmacher D., Beyer A. et al. // Nanotechnology. 2001. V. 12. P. 81.
- [4] Сурис Р.А., Дмитриев И.А. // УФН. 2003. Т. 173. В. 7.
- [5] Entin M.V., Magarill L.I. // Phys. Rev. 2002. V. B66. P. 205308.
- [6] Магарилл Л.И., Энтин М.В. // ЖЭТФ. 2003. Т. 123. С. 867.
- [7] Магарилл Л.И., Энтин М.В. // Письма в ЖЭТФ. 2003. V. 78 (4). С. 249.
- [8] Kibis O.V., Parfitt D.G.W., Portnoi M.E. // Phys. Rev. 2005. B 71. P. 035411.
- [9] Мэтьюз Дж., Уокер Р. Математические методы физики. М.: Атомиздат, 1972.