06;07 Оптические свойства нанослоев SnO_{2-x}

© Э.П. Домашевская, С.В. Рябцев, Е.А. Тутов, Ю.А. Юраков, О.А. Чувенкова, А.Н. Лукин

Воронежский государственный университет E-mail: ftt@phys.vsu.ru

Поступило в Редакцию 21 марта 2006 г.

Обнаружены особенности оптических спектров и вольт-фарадных характеристик нанослоев SnO_{2-x}, которые определяются поверхностными и межкристаллитными состояниями атомов (Sn²⁺), обусловленными дефицитом кислорода и образующими локализованные состояния в запрещенной зоне SnO_{2-x}. Наблюдаемый размерный эффект в нанослоях SnO_{2-x} проявляется в увеличении величины запрещенной зоны по сравнению с объемным SnO₂.

PACS: 78.67.-n

 ${\rm SnO}_2$ — полупроводник *n*-типа с запрещенной зоной $E_g \sim 3.6$ eV. Благодаря широкому диапазону электропроводности, которая обеспечивается кислородными вакансиями [1,2], пленки ${\rm SnO}_2$ применяются в качестве оптически прозрачных электродов, твердотельных газовых сенсоров и т.д. Степень дефектности структуры оксида и его электропроводность в значительной мере определяются технологией получения пленок ${\rm SnO}_2$.

В настоящей работе нанослои SnO₂ получали путем окисления пленок олова толщиной 30 nm в атмосфере осушенного воздуха. Олово чистотой 99.99% наносилось на подложки с помощью магнетронной системы распыления в плазмообразующей среде аргона. Окисление пленок олова проводилось в две стадии. Первая стадия включала нагрев пленки до температуры 200°C, т.е. ниже точки плавления Sn, и двухчасовой отжиг. Вторая стадия — медленный нагрев (~ 10°C/min) до необходимой температуры и стабилизирующий отжиг в течение 2 h. Температура стабилизирующего отжига для различных образцов изменялась в интервале 200–700°C.

Фазовый состав нанослоев, окисленных при 200, 400 и 600°С, изучали методом просвечивающей электронной микроскопии в режиме общей дифракции. Установлено, что фазовый состав полученных при

7

отжиге нанослоев соответствует соединению SnO₂. Следует отметить, что в тонких пленках во всем исследуемом интервале температур, кроме стабильной тетрагональной фазы, наблюдается и нестабильная орторомбическая фаза диоксида олова. Анализ интенсивности картин электронной дифракции показал, что содержание этих фаз в пленках сравнимо и существенно не изменяется для различных температур отжига пленок.

Оптические характеристики пленок SnO_2 , окисленных при температуре 250, 450, 550 и 700°С, изучались в диапазоне длин волн 200–1200 nm с шагом 1 nm. Спектры поглощения образцов представлены на рис. 1.

Края собственного поглощения высокотемпературных образцов (450, 550 и 700°С) имеют хорошее совпадение (рис. 1). Для этих образцов пороговая энергия прямого перехода, определенная путем экстраполяции касательной к нулевому значению, лежит в области 4.2 eV. Для образца, окисленного при 250°С, эта величина немного меньше и составляет 4.0 eV. Такие значения энергий прямых переходов являются несколько завышенными по сравнению со средней величиной E_g , приводимой в литературе (~ 3.6 eV), главным образом для объемных образцов [3]. Увеличение величины E_g в нанослоях SnO₂ полученных нами образцов можно объяснить чрезвычайно малой толщиной пропускающего кванты слоя, т.е. размерным эффектом.

Однако наибольший интерес представляет в наших спектрах спектральный максимум в области 3.6 eV, наблюдаемый для образцов, отожженных при температурах 250 и 450°С. В спектре пленки, отожженной при температуре 550°С, этот максимум существенно ослабевает, и на кривой высокотемпературной пленки (700°С) эта особенность уже трансформируется в плечо или "хвост", экстраполяция которого к нулю дает примерно ту же энергию ~ 3.6 eV.

Термодинамический анализ равновесия собственных точечных дефектов, проведенный в работе [4], показал, что преобладающим типом дефектов в пределах области гомогенности SnO₂ являются дважды ионизированные вакансии кислорода.

По данным термогравиметрических исследований, состав оксида олова (IV) более точно отражается формулой SnO_{2-x} , где отклонение от стехиометрии $x = 10^{-5} \div 10^{-3}$ [5]. Концентрация вакансий кислорода уменьшается при отжиге образцов в кислородсодержащей среде.

Рис. 1. Спектры поглощения пленок SnO₂, окисленных при различной температуре.

Энергетический спектр электронных состояний в запрещенной зоне поликристаллических образцов SnO₂ надежно не установлен. Тем не менее в монокристаллах SnO₂ достаточно хорошо определены энергетические уровни вакансий кислорода $[V_{O^+}]$ и $[V_{O^{2+}}]$. Согласно работам [1,2], они лежат соответственно на глубине ~ 30 и ~ 150 meV ниже края зоны проводимости, т.е. существенно ближе к основному краю поглощения, чем наблюдаемый нами пик. Таким образом, полученные нами результаты невозможно объяснить этими данными.

В то же время авторы работы [6] методом функционала плотности в комбинации с двумя различными псевдопотенциалами определили вклад поверхностных состояний (100) в зонную структуру и оптические спектры поглощения. Они показали, что отсутствие атомов мостикового кислорода на поверхности (110) ленточного нанокристалла SnO₂ толщиной в две элементарные ячейки приводит к появлению интенсивности дополнительного максимума в оптическом спектре, расположенного перед основным краем поглощения.

По-видимому, появление близкого по природе максимума и зарегистрировано на полученных нами краях поглощения нанослоев SnO_{2-x} . Он отражает вклад поверхностных и межкристаллитных состояний, обусловленных дефицитом кислорода. По мере увеличения температуры отжига нанослоев на воздухе кислород залечивает эти дефекты, интенсивность максимума уменьшается, и при 700°C он вырождается в "хвост" края поглощения (рис. 1).

Кроме того, главная запрещенная щель E_g (прямой переход в центре зоны Бриллюэна) в ленточном монокристалле [6] оказывается почти на $\sim 1 \text{ eV}$ больше, чем в объемном SnO₂ ($E_g \sim 3.6 \text{ eV}$). В этом и состоит размерный эффект увеличения E_g при переходе от трехмерного 3D к двухмерному 2D кристаллу, который мы наблюдаем в эксперименте при измерении главного края поглощения в нанослоях, дающем при экстраполяции значение $E_g \ge 4.0 \text{ eV}$ против $E_g \sim 3.6 \text{ eV}$ в объемных кристаллах и толстых слоях SnO₂.

Кроме оптических спектров, в полученных нанослоях SnO_{2-x} были исследованы вольт-фарадные (C–V) характеристики гетероперехода SnO_{2-x}/Si, которые изучались на частоте тестирующего сигнала 1 MHz. В качестве подложки и нижнего измерительного электрода использовался монокристаллический кремний *n*-типа. Естественный туннельнопрозрачный (~ 3 nm) оксидный слой на кремнии стабилизирует параметры гетерограницы полупроводник/диэлектрик и обеспечивает низкую плотность поверхностных состояний, на фоне которых проявляются особенности электронной структуры оксида олова.

Вольт-фарадные характеристики низкотемпературных (250 и 450°С) образцов имеют особенность в области нулевого потенциала, связанную с перезарядкой уровней быстрых электронных состояний (рис. 2). Постепенное сглаживание вольт-фарадных характеристик с повышением температуры окисления образцов объясняется уменьшением плот-

Рис. 2. Вольт-фарадные характеристики гетероперехода SnO_{2-*x*}/Si для различных температур окисления Sn.

ности электронных состояний. Высокотемпературный отжиг $(700^{\circ}C)$ приводит к формированию практически бездефектного слоя SnO₂, поэтому немонотонность на C–V кривой отсутствует, так же как и на оптических спектрах.

Таким образом, на основании анализа результатов, полученных в настоящей работе, можно сделать вывод, что особенности оптических спектров и вольт-фарадных характеристик определяются поверхностными и межкристаллитными состояниями атомов (Sn^{2+}), обусловленными дефицитом кислорода в нанослоях SnO_2 , которые образуют локализованные состояния в запрещенной зоне SnO_2 .

Авторы выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку работы (гранты РФФИ № 03-03-96502 и 05-03-96414).

Список литературы

- [1] Samson S., Fonstad C.G. // J. Appl. Phys. 1973. V. 44. N 10. P. 4618-4621.
- [2] Fonstad C.G., Rediker R.H. // J. Appl. Phys. 1971. V. 42. N 7. P. 2911-2918.
- [3] *Соболев В.В.* Собственные энергетические уровни сединений группы А^{IV}В^{VI}. Кишинев: Штиица, 1981. 284 с.
- [4] Богданов К.П., Дмитров Д.П., Луцкая О.Ф. и др. // ФТП. 1998. Т. 32. В. 10. С. 1158–1160.
- [5] Mizusaki J, Koinuma H., Shimoyama J. et al. // J. Solid State Chem. 1990. V. 88. P. 443–450.
- [6] Maki-Jaskari Matti A., Rantala Tapio T. // Phys. Rev. B. 2002. V. 64. P. 075407-1-7.