03, 12, 13Тройные сплавы Cd_yZn_{1-y}O и Mg_xZn_{1-x}O — материалы для оптоэлектроники

© А.А. Лотин¹, О.А. Новодворский¹, В.Я. Панченко¹, Л.С. Паршина¹, Е.В. Хайдуков¹, Д.А. Зуев¹, В.В. Рочева¹, О.Д. Храмова¹, К.Д. Щербачев²

¹ Институт проблем лазерных и информационных технологий РАН,

Шатура, Московская обл., Россия

² Национальный исследовательский технологический университет «МИСиС»,

Москва, Россия

E-mail: Lotin_82@mail.ru

(Поступила в Редакцию 14 июля 2010 г.)

Методом импульсно-лазерного осаждения на сапфировых подложках выращены тонкие пленки $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ в диапазоне y = 0-0.35 и x = 0-0.45. Достигнуты рекордные пределы растворимости Cd и Mg в гексагональном оксиде цинка, равные y = 0.3 и x = 0.35. Рассогласование постоянных кристаллической решетки *a* пленок $Cd_{0.2}Zn_{0.8}O$ и $Mg_{0.35}Zn_{0.65}O$ не превышало 1%, а разрыв запрещенной зоны при этом достигал 1.3 eV. Шероховатость пленок не превышала 2.5 nm для значений x = 0-0.27 и y = 0-0.2.

Работа выполнена при поддержке грантов РФФИ № 09-07-00208, 09-07-12151, 09-08-00291.

1. Введение

В последнее время большое внимание уделяется широкозонным полупроводникам $A^{II}B^{VI}$, так как оптоэлектронные устройства на их основе способны работать в видимом и ультрафиолетовом диапазонах длин волн [1–4]. Особый интерес представляет прямозонный оксид цинка благодаря широкой запрещенной зоне $E_g = 3.37 \text{ eV}$ и рекордной среди полупроводников энергии связи экситонов 60 meV, что обеспечивает эффективную экситонную эмиссию при более высоких температурах по сравнению с оптическими полупроводниками $A^{III}B^V$ [5].

Управление шириной запрещенной зоны Е_g в полупроводниках является одной из важнейших задач при создании различных гетероструктур и конструировании оптоэлектронных устройств на их основе. Увеличение E_g в полупроводниках $A^{II}B^{VI}$ может быть достигнуто посредством частичного замещения элементов А вышестоящими элементами той же группы Периодической системы химических элементов, а уменьшение нижестоящими. Так, при частичном замещении Zn на Mg ширина запрещенной зоны оксида цинка увеличивается. Поскольку ионный радиус Mg²⁺ (0.57 Å) близок к ионному радиусу Zn^{2+} (0.6 Å), можно ожидать высокой растворимости Мд в оксиде цинка. В работе [6] методом имульсного лазерного осаждения на сапфировой подложке (00.1) получены пленки $Mg_x Zn_{1-x}O$, сохраняющие структуру вюрцита с содержанием Mg вплоть до 25 at.%, при этом ширина запрещенной зоны увеличилась до 3.8 eV, а изменение параметра кристаллической решетки а не превышало 1%.

При частичном замещении Zn на Cd ширина запрещенной зоны оксида цинка уменьшается. В работе [7] методом импульсного лазерного осаждения на сапфировой подложке (00.1) получены пленки $Cd_yZn_{1-y}O$ с содержанием Cd до 7 at.%. При этом ширина запрещенной зоны уменьшалась до 2.9 eV.

Поскольку оксид цинка обладает гексагональной кристаллической структурой (вюрцит), а оксиды магния и кадмия — кубической, рост тройных сплавов $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ со структурой вюрцита во всем диапазоне значений x и y не представляется возможным. Поэтому целью нашей работы было получение согласованных по параметрам кристаллической решетки в плоскости роста пленок тройных растворов $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ с максимально возможным разрывом запрещенной зоны.

2. Методика эксперимента

Пленки Mg_xZn_{1-x}O и Cd_yZn_{1-y}O получали методом импульсного лазерного осаждения из керамических мишеней, для изготовления которых использовались порошки ZnO, CdO и MgO высокой чистоты (99.999%). Были изготовлены две серии смесей порошков (MgZn)O и (CdZn)O с содержанием MgO до 34 at.% и CdO 35 at.%. Полученные смеси порошков прессовались в таблетки и затем отжигались в течение 2 h при температуре 800°С в атмосфере кислорода. В качестве подложек был использован сапфир с ориентацией (00.1) с эпиполировкой рабочей поверхности. Схема экспериментальной установки описана нами ранее в работе [8]. В качестве высоковакуумных насосов одновременно использовались турбомолекулярный и криогенный насосы, что позволяло обеспечить в рабочем объеме вакуум не хуже 10^{-7} Torr c относительно низким содержанием водорода и углерода. Абляция керамических мишеней осуществлялась эксимерным лазером LC-7020 при частоте повторения импульсов 10 Hz ($\lambda = 248$ nm, $\tau = 15$ ns), при

Рис. 1. $\theta - 2\theta$ - (*a*) и ω -сканы (*b*) вблизи узла решетки (00.2) пленок $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ в диапазонах концентраций в них Mg и Cd $0 \le x \le 0.45$ и $0 \le y \le 0.3$.

этом плотность энергии лазерного излучения на мишени составляла 4 J/cm². Напыление пленок осуществлялось при температуре подложки 450°C и давлении кислорода в рабочей камере 5 mTorr.

Получены две серии образцов пленок $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ толщиной 300 nm. Содержание Mg и Cd в пленках определялось методом рентгеновской фотоэлектронной спектроскопии на установке ESCA 5700 (Physic Electronics). Структурные характеристики пленок $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ исследовались на многоцелевом рентгеновском дифрактометре D8 Discover (Bruker-AXS) в геометрии параллельного пучка. Скорость роста и морфология поверхности пленок определялись при помощи атомно-силового микроскопа (ACM) DME DualScope 2401. Спектры пропускания пленок измерялись на спектрофотометре Cary-50 (Varian). Удельное сопротивление образцов определялось по четырехточечной схеме Ван-дер-Пау на приборе Pro4 (Lucas Labs).

3. Результаты эксперимента и их обсуждение

Результаты рентгеновской фотоэлектронной спектроскопии показали, что концентрация Mg в пленках $Mg_x Zn_{1-x}O$ превышала его концентрацию в мишенях примерно в 1.33 раза [9], а содержание Cd в пленках Cd_yZn_{1-y}O и в мишенях совпадало.

Результаты рентгенодифракционного анализа приведены на рис. 1, где представлены $\theta - 2\theta$ -сканы пленок $Mg_xZn_{1-x}O$ и $Cd_yZn_{1-y}O$ вблизи узла решетки (00.2) для $0 \le x \le 0.45$ и $0 \le y \le 0.3$. Рентгеноструктурный анализ показал, что пленки Mg_xZn_{1-x}O и Cd_yZn_{1-y}O сохраняют кристаллическую структуру вюрцита с ориентацией роста вдоль оси с в диапазоне значений x = 0 - 0.35 и y = 0 - 0.3. При увеличении концентрации Мд вплоть до x = 0.18 рефлекс от узла решетки (00.2) плавно смещался в сторону уменьшения угла θ . При дальнейшем увеличении концентрации Mg до x = 0.35 рефлекс начал смещаться в сторону больших углов. При концентрации Mg 45 at.% в спектре рентгеновского отражения пленки наблюдался только пик вблизи узла (10.1) ZnO, что указывает на изменение ориентации роста пленки. Для пленок Cd_vZn_{1-v}O при увеличении концентрации кадмия в диапазоне у = 0-0.3 рефлекс от узла решетки (00.2) плавно смещался в сторону уменьшения угла 2θ . Сигнал отражения в $\theta - 2\theta$ спектре пленки Cd_{0.35}Zn_{0.65}O отсутствовал, что указывает на аморфный характер пленки. Спектр пропускания пленки Cd_{0.35}Zn_{0.65}O также демонстрирует отсутствие края фундаментальной полосы поглощения. При этом наличие кубической фазы CdO на наблюдалось ни в одном из исследуемых образцов Cd_vZn_{1-v}O. Для определения параметров решетки с и а были измерены дифрактограммы $\theta - 2\theta$ для отражений (00.4) и (10.4). С помощью программы TOPAS из программного пакета к дифрактометру D8 Discover были уточнены значения параметров решетки с и а с учетом аппаратной функции прибора. Изменение параметров кристаллической решетки а и с в зависимости от концентрации Cd и Mg в пленках представлены на рис. 2, а и b.

Рис. 2. Зависимости параметров кристаллической решетки a (a) и c (b) пленок $Mg_xZn_{1-x}O$ и $Cd_yZn_{1-y}O$ от концентрации в них Mg и Cd в диапазоне значений $0 \le x \le 0.45$ и $0 \le y \le 0.3$.

Из рис. 2 видно, что параметр а для пленок Cd_vZn_{1-v}O слабо меняется при увеличении Cd до у = 0.2, но при дальнейшем увеличении концентрации Сd параметр решетки *а* резко уменьшается. Параметр решетки с при этом монотонно возрастал во всем исследуемом диапазоне у. Для пленок $Mg_xZn_{1-x}O$ при увеличении доли магния от x = 0 до 0.35 параметр решетки а монотонно убывал, а параметр решетки с в этом диапазоне х изменялся в пределах 0.7% и значительно уменьшался для x = 0.45, что можно связать с изменением ориентации роста образца Mg_{0.45}Zn_{0.55}O. Таким образом, при использовании импульсно-лазерного осаждения предел растворимости кадмия и магния в пленках тройных растворов Cd_vZn_{1-v}O и Mg_xZn_{1-x}O достигает 30 и 35 at.% соответственно. При получении пленок Cd_vZn_{1-v}O методом МЛЭ в [10] была также продемонстрирована растворимость Cd в ZnO до 30 at.%, но рентгеноструктурного анализа пленок в этой работе проведено не было.

Как отмечено выше, управление шириной запрещенной зоны E_g в полупроводниках является одной из главных задач при создании гетероструктур. Поэтому для определения E_g были измерены спектры пропус-

кания пленок $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ в указанных диапазонах значений x и y. На рис. 3, a приведены спектры пропускания пленок $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ содержащих магний в диапазоне x = 0-0.45 и кадмий в диапазоне y = 0-0.3. Значения ширины запрещенной зоны E_g определялись по спектрам пропускания с учетом того, что

$$\alpha^2(h\nu) \propto (h\nu - E_g),$$

где α — коэффициент поглощения, hv — энергия фотона [11]. Как видно из рис. 3, *a*, увеличение содержания магния в пленках $Mg_x Zn_{1-x}O$ приводит к монотонному сдвигу края фундаментальной полосы поглощения пленок в синюю область, при этом E_g возрастает от 3.3 до 5.72 eV. Край фундаментальной полосы поглощения пленок $Cd_y Zn_{1-y}O$ при увеличении *y*, напротив, сдвигался в красную область спектра, ширина запрещенной зоны E_g при этом достигала значения 2.51 eV при концентрации кадмия 30 at.%. Пленки $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ имеют резкий край фундаментальной полосы поглощения вплоть до значения x = 0.35 и y = 0.3. В спектре пропускания пленки $Cd_{0.35}Zn_{0.65}O$ край фундаменталь-

Рис. 3. Спектры пропускания (a) и ширина запрещенной зоны $E_g(b)$ пленок $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ в зависимости от концентрации в них Cd и Mg.

Рис. 4. Зависимости шероховатости (*a*) и удельного сопротивления ρ (*c*) пленок $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ от концентрации в них Cd и Mg. *b* — морфология поверхности пленок $Cd_{0.35}Zn_{0.65}O$ и $Mg_{0.45}Zn_{0.55}O$.

ной полосы поглощения отсутствовал. На основе анализа зависимостей изменения параметра кристаллической решетки a (рис. 2, a) и ширины запрещенной зоны E_g (рис. 3, b) пленок от концентрации примесей можно заключить, что метод лазерно-плазменного осаждения позволяет выращивать ненапряженные ($\Delta a/a < 1\%$) гетероструктуры Cd_yZn_{1-y}O/Mg_xZn_{1-x}O с разрывом запрещенной зоны до 1.3 eV.

Помимо согласованности параметров кристаллической решетки при формировании границ в гетероструктурах важным требованием является гладкость поверхности пленок. Поэтому нами было проведено исследование морфологии поверхности пленок $Mg_x Zn_{1-x}O$ и $Cd_y Zn_{1-y}O$ методом атомно-силовой микроскопии. Область сканирования составляла $5 \times 5 \mu$ m. Результаты АСМ-исследований поверхности пленок представлены на рис. 4.

Шероховатость пленки чистого оксида цинка повторяла шероховатость сапфировой подложки и не превышала 0.5 nm. Шероховатость $Mg_xZn_{1-x}O$ и $Cd_yZn_{1-y}O$ пленок не превышала 2.5 nm в диапазоне значений x = 0-0.27 и y = 0-0.2. Однако при дальнейшем увеличении концентрации кадмия и магния в пленках $Cd_yZn_{1-y}O$ и $Mg_xZn_{1-x}O$ шероховатость их поверхности резко увеличивалась и достигала значения 12.5 nm для y = 0.35 и x = 0.45 (рис. 4, *b*). По-видимому, такое резкое ухудшение морфологии пленок $Mg_xZn_{1-x}O$ и $Cd_yZn_{1-y}O$ связано с возрастанием количества дефектов при увеличении *x* и *y*.

Известно, что даже нелегированный оксид цинка обладает электронной проводимостью благодаря наличию дефектов в виде кислородных вакансий и неконтролируемых примесей водорода [12]. Нами было исследовано удельное сопротивление ρ пленок Mg_xZn_{1-x}O и Cd_yZn_{1-y}O. Полученные зависимости изменения ρ от концентрации Mg и Cd в полулогарифмическом масштабе представлены на рис. 4, *c*. Из рис. 4, *c* видно, что удельное сопротивление ρ пленок Mg_xZn_{1-x}O растет с увеличением содержания в них Mg от 0.4 до 10⁴ $\Omega \cdot$ cm в диапазоне значений x = 0-0.45. Удельное сопротивление пленок Cd_yZn_{1-y}O уменьшается с ростом доли Cd до 0.16 $\Omega \cdot$ cm при значении y = 0.3, а для аморфной пленки Cd_{0.35}Zn_{0.65}O составляет 26.7 $\Omega \cdot$ cm.

4. Заключение

Нами были достигнуты рекорные пределы растворимости Mg и Cd в гексагональном оксиде цинка равные x = 0.35 и y = 0.3, при использовании метода импульсно-лазерного осаждения. Рассогласование кристаллических решеток в плоскости роста не превышало 1% для пленок Mg_xZn_{1-x}O и Cd_yZn_{1-y}O вплоть до значений x = 0.35 и y = 0.2, а разрыв запрещенной зоны при этом составил 1.3 eV. Шероховатость пленок не превышала 2.5 nm для значений x = 0-0.27 и y = 0-0.2. Все перечисленные выше параметры тонких пленок Mg_xZn_{1-x}O обеспечивают возможность реализовать высококачественные ненапряженные гетероструктуры Cd_yZn_{1-y}O/Mg_xZn_{1-x}O для различных оптоэлектронных применений в широком диапазоне значений x и y.

Список литературы

- [1] Ф. Шуберт. Светодиоды. Физматлит, М. (2008). 496 с.
- [2] Ю.Н. Бобренко, С.Ю. Павелец, А.М. Павелец, М.П. Киселюк, Н.В. Ярошенко. ФТП 44, 1114 (2010).

- [3] M.J. Bevan. H.D. Shih, J.A. Dodge, A.J. Syllaios, D.F. Weirauch. J. Electrin. Mat. 27, 769 (1998).
- [4] Y.R. Ryu, T.-S. Lee, J.A. Lubguban, H.W. White, B.-J. Kim, Y.S. Park, C.J. Youn. Appl. Phys. Lett. 88, 241 108 (2006).
- [5] T. Makina. Y. Segava, M. Kawasaki. Semicond. Sci. Technol. 20, S 78 (2005).
- [6] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakarai, Y. Yasuba, T. Yasuba, Y. Segawa. Appl. Phys. Lett. **72**, 2466 (1998).
- [7] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma. Appl. Phys. Lett. 78, 1237 (2001).
- [8] О.А. Новодворский, Л.С. Горбатенко, В.Я. Панченко, О.Д. Храмова, Е.А. Черебыло, К. Венцель, Й.В. Барта, В.Т. Бублик, К.Д. Щербачев. ФТП 43, 440 (2009).
- [9] А.А. Лотин, О.А. Новодворский, Е.В. Хайдуков, В.В. Рочева, О.Д. Храмова, В.Я. Панченко, К. Венцель, Н. Трумпайска, К.Д. Щербачев. ФТП 44, 260 (2010).
- [10] J.W. Mares, F.R. Ruhge, A.V. Thompson, P.G. Kik, A. Osinsky, B. Hertog, A.M. Dabiran, P.P. Chow, W.V. Schoenfeld. Opt. Mat. **30**, 346 (2007).
- [11] П. Ю, М. Кардона. Основы физики полупроводников. Физматлит, М. (2002). 560 с.
- [12] U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, A. Reshckikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc. J. Appl. Phys. 98, 041 301 (2005).