03 Исследование распределения давления по поверхности комбинированных тел при обтекании гиперзвуковым потоком

© Н.И. Сидняев

Московский государственный технический университет им. Н.Э. Баумана E-mail: sidn_ni@mail.ru

В окончательной редакции 9 февраля 2006 г.

Проведенный анализ опубликованных экспериментальных и теоретических работ показывает, что в настоящее время отсутствуют систематические данные по исследованию влияния различных определяющих параметров (чисел M_{∞} и Re_{∞} , угла атаки и т.д.) на сверхзвуковое обтекание летательных аппаратов с изломами образующей внешнего контура. Это обстоятельство затрудняет оценку воздействия распределения давления, трения и теплопередачи по их поверхности и требует, прежде всего, всестороннего экспериментального изучения их обтекания при различных значениях определяющих параметров [1,2].

PACS: 47.40.Ki

Для установления особенностей физической картины обтекания тел сложной геометрической формы проводились экспериментальные исследования обтекания модели летательного аппарата, представляющего собой различные сочетания конических участков с затупленным сферическим носком (рис. 1). Геометрические характеристики модели с биконической центральной частью имели следующие размеры: $l_0 = 0.00805$ m; $l_1 = 0.022$ m; $l_2 = 0.0625$ m; $l_3 = 0.1432$ m; $l_M = 0.185$ m — длины сферического носка и конических участков; $R_0 = 0.013$ m, $R_1 = 0.0173$ m, $R_2 = 0.0303$ m, $R_3 = 0.0361$ m, $R_M = 0.047$ m — радиусы сферического носка и конусов; полууглы раскрытия боковых поверхностей соответствующих конусов $\beta_1 = 20^\circ 30'$; $\beta_2 = 17^\circ 50'$; $\beta_3 = 4^\circ$, $\dot{\beta}_4 = 15^\circ 30'$.

Исследования спектров течений, распределений давления по поверхности тела проводились в сверхзвуковой аэродинамической трубе ($M_{\infty} = 6$; угол атаки $\alpha = 0-11^{\circ}$; $T_0 = 473$ K; $10.7 \cdot 10^5 \leqslant P_0 \leqslant 59.8 \cdot 10^5$ Pa; $1.04 \cdot 10^7 \leqslant \text{Re}_{\infty} \leqslant 5.8 \cdot 10^7$ 1/m) соответственно при ламинарном (см. рис. 1, *a*) и турбулентном (см. рис. 1, *b*)

19

Рис. 1. Схемы обтекания модели: a — при $\text{Re}_{\infty} = 1.04 \cdot 10^7 \text{ m}^{-1}$ (обтекания с отрывом); b — при $\text{Re}_{\infty} = 5.8 \cdot 10^7 \text{ m}^{-1}$ (безотрывное обтекание); l, 2, 4 — скачки уплотнения; 3 — зона отрыва.

режимах. Анализ полученных экспериментальных данных показывает, что при числе $\text{Re}_{\infty} = 1.04 \cdot 10^7 1/\text{m}$ (рис. 1, *a*) перед коническим стабилизатором помимо ударной волны *1* в области течения между головной ударной волной и поверхностью тела, вследствие разворота и торможения потока, формируется скачок *2* уплотнения с углом наклона β_{jump1} и образуется зона *3* отрыва пограничного слоя с углом наклона разделяющей линии тока β_{sep} . Зона отрыва, в свою очередь, индуцирует скачок уплотнения *4* на коническом стабилизаторе с углом наклона β_{jump2} . При сравнительно небольших углах атаки ($\alpha \approx 2^{\circ}40'$) на подветренной стороне тела формируется зона *1* отрывного течения, охватывающая небольшую область поверхности стабилизатора и часть конического участка, примыкающего к нему. Коэффициент давления в точках поверхности тела определялся из соотношения $C_p = (p - p_{\infty})/q_{\infty}$, где q_{∞} — скоростной набор статического давления p_{∞} .

21

Рис. 2. Распределение давления по боковой поверхности модели с биконической носовой частью при $\alpha = 0^{\circ}$: $I - \text{Re}_{\infty} = 1.04 \cdot 10^7 \text{ m}^{-1}$; $2 - 1.99 \cdot 10^7 \text{ m}^{-1}$; $3 - 3.89 \cdot 10^7 \text{ m}^{-1}$; $4 - 5.79 \cdot 10^7 \text{ m}^{-1}$.

Коэффициенты давления для ламинарного пограничного слоя рассчитываются по следующему соотношению:

$$C_p^l = \frac{\kappa}{\sqrt[4]{\operatorname{Re}_e(\operatorname{M}_e^2 - 1)}}$$

где $\kappa = 0.889$ в точке отрыва, $\kappa = 1.778$ в области "плато", M_e и Re_e — местные значения чисел Маха и Рейнольдса. Результаты расчетов [3,4] показывают, что перед стабилизатором формируется отрывная зона с углом $\beta_{sep} \sim 6^\circ$. При этом длина зоны отрыва, отсчитываемая от начального сечения стабилизатора вверх по потоку, $x_{sep} = 12-18$ mm. Результаты этих расчетов удовлетворительно согласуются с данными экспериментальных исследований (рис. 2).

Явление отрыва тесно связано с параметрами пограничного слоя [3,5]. Отрыв возникает тогда, когда в направлении вниз по потоку давление возрастает или когда в пограничном слое создается неблагоприятный градиент давления достаточной величины. По мере повышения давления течение в пограничном слое замедляется как за счет действия самого давления, так и вследствие поверхностного

трения, и в конечном итоге жидкость вблизи поверхности приводится в состояние покоя. После того как произошел отрыв, пограничный слой превращается в слой сдвига внутри свободной жидкости, называемый иногда вихревым слоем. Следует отметить, что области сдвига, внутри которых градиент скорости оказывается значительно больше, чем в какой-либо другой точке, возникают там, где появляются разрывы скорости или физических характеристик жидкости.

При несимметричном обтекании ($\alpha \neq 0^{\circ}$) изменения давления по мере увеличения числа Рейнольдса аналогичны случаю $\alpha=0^\circ$ и сохраняются те же особенности в распределении С_p, но при этом происходит уменьшение разности давлений на наветренной и подветренной сторонах тела (см. рис. 3, а, b). С увеличением угла атаки указанные особенности обтекания проявляются более существенно (рис. 3, c). Так, например, при турбулентном режиме течения общее напряжение трения складывается из напряжения трения, вызванного молекулярной и турбулентной вязкостью. На большом расстоянии от стенки величина турбулентной вязкости намного превышает величину молекулярной вязкости. Вблизи стенки турбулентные пульсации затухают, и молекулярная вязкость играет решающую роль в распределении давления. В случае больших начальных возмущений та промежуточная стадия процесса перехода, которая может описываться с помощью линейной теории, отсутствует [2]. Те большие возмущения, которые здесь имеются в виду, фактически довольно малы; например, если степень начальной турбулентности потока составляет 0.25% или более, то колебания ламинарного пограничного слоя уже не поддаются наблюдению, так как даже в случае их существования они заслоняются сильными пульсациями скорости, индуцируемыми в пограничном слое за счет турбулентности внешнего потока.

При числах $\text{Re}_{\infty} \ge 5.79 \cdot 10^7 \text{ cm}^{-1}$ картина течения между головной ударной волной I и поверхностью тела существенно изменяется: перед стабилизатором не возникает видимой области отрывного течения, а угол наклона скачка уплотнения 4 увеличивается (см. рис. 1, b). Положение точки перехода в большой мере определяется степенью турбулентности потока. Переход пограничного слоя зависит от степени турбулентности потока $\varepsilon = 100\sqrt{1/3(u'^2 + v'^2 + w'^2)}/u_{\infty}$, где u', v', w' представляют собой среднеквадратичные значения трех составляющих турбулентных пульсаций скорости. Опытные данные могут быть приближенно аппроксимированы $\text{Re}_{x \ conv.} \approx 1/\varepsilon$, откуда при $u_{\infty}/v = \text{const}$

Рис. 3. Распределение давления по боковой поверхности модели: a — при $\alpha = 3^{\circ}20'$, $\text{Re}_{\infty} = 1.04 \cdot 10^7 \,\text{m}^{-1}$; b — при $\alpha = 3^{\circ}20'$, $\text{Re}_{\infty} = 5.79 \cdot 10^7 \,\text{m}^{-1}$; c — при $\alpha = 6^{\circ}40'$, $\text{Re}_{\infty} = 1.04 \cdot 10^7 \,\text{m}^{-1}$, $\text{Re}_{\infty} = 5.8 \cdot 10^7 \,\text{m}^{-1}$; углы образующих: $I - \varphi = 0^{\circ}$ (•), $2 - \varphi = 30^{\circ}$ (•), $3 - \varphi = 60^{\circ}$ (+), $4 - \varphi = 90^{\circ}(*)$, $5 - \varphi = 150^{\circ}$ (o), $6 - \varphi = 180^{\circ}$ (п).

следует, что $x_{conv.} \approx 1/\varepsilon$, где v — кинематическая вязкость. С другой стороны, для модели протяженностью l_M при ε = const можно записать: Re_{x conv.} $\approx (u_{\infty}l_M/v)x_{conv.}/l_M$, т.е. $x_{conv.} \approx 1/\text{Re}_{x conv.}$. Таким образом, изменения точки перехода $x_{conv.}$ в зависимости от ε и от Re_{x conv.} имеют

Рис. 3 (продолжение).

одинаковый характер. Эта приближенная аналогия, как показывают опыты, справедлива вплоть до $\varepsilon \approx 5\%$. При $\varepsilon > 5\%$ значение $x_{conv.}$ при $u_{\infty}/v =$ const практически не зависит от ε , поскольку точка перехода в пограничном слое становится близкой к точке потери устойчивости ламинарного пограничного слоя. Что касается сопротивления давления, то оно зависит главным образом от формы обтекаемого тела. Снижение давления на поверхности конической носовой части тела, прилегающей к центральным коническим участкам, связано с распределением вверх по потоку влияния пониженного давления через пограничный слой.

Турбулентность потока может оказать влияние на значение C_p только через пограничный слой, характер развития которого влияет на эффективный контур обтекаемого тела, определяемый распределением толщины вытеснения в пограничном слое. Положение точки перехода $x_{conv.}$ ламинарного пограничного слоя в турбулентный на поверхности биконического тела само по себе оказывает слабое влияние на распределение давления. Однако значение $x_{conv.}$ влияет на положение точки отрыва (турбулентный слой более устойчив к отрыву, чем ламинарный), от которого сильно зависит распределение давления и в итоге сопротивление давления. Этим можно объяснить тот факт, что использование в работах [3–5] фактора турбулентности f для корректировки опытного числа Рейнольдса ($\operatorname{Re}_{ef.} = f \operatorname{Re}_{exp}$) приводит к заметному улучшению сходимости значений подъемных сил на профилях, испытанных в разных аэродинамических трубах.

Обобщая сказанное, следует отметить, что имеющиеся данные по распределению давления по поверхности тел вращения подтверждают тот факт, что градиент давления, интенсивность турбулентности воздушного потока и изломы поверхности являются весьма важными определяющими параметрами в дополнение к числу Рейнольдса (см. рис. 2, 3). Следует отметить, что полученные экспериментальные данные позволят усовершенствовать методику [2] учета влияния степени турбулентности потока на значение C_x .

Таким образом, число Рейнольдса оказывает существенное влияние на распределение давления по поверхности тела. При наличии точки излома на контуре тела в потоке появляется ряд характерных зон, наличие которых необходимо учитывать при разработке методов расчета.

Полученные экспериментальные результаты позволяют приступить к совершенствованию методик численного расчета трехмерного пограничного слоя при обтекании сложных тел.

Список литературы

- [1] Авдуевский В.С. и др. // Основы теплопередачи в авиационной и ракетнокосмической технике. М.: Машиностроение, 1975. 624 с.
- [2] Турбулентные течения и теплопередача / Под ред. Линь Цзя-цзяо. М.: Изд-во иностр. лит., 1963. С. 564.
- [3] Научные основы технологий XXI века / Н.И. Сидняев, В.Т. Калугин, А.Ю. Луценко и др.; Под общ. ред. А.И. Леонтьева, Н.Н. Пилюгина, Ю.В. Полежаева и др. М.: УНПЦ "Энергомаш", 2000. 136 с.
- [4] Сидняев Н.И. // Математическое моделирование. 2004. Т. 16. № 5. С. 55-65.
- [5] Нестационарная аэродинамика баллистического полета / Ю.М. Липницкий, А.В. Красильников, А.П. Покровский и др.; Отв. ред. Ю.М. Липницкий. М.: Физматлит, 2003. С. 176.