06;12

Термическая стабильность многослойных контактов, сформированных на GaN

© А.Е. Беляев, Н.С. Болтовец, В.Н. Иванов, Р.В. Конакова, Я.Я. Кудрик, П.М. Литвин, В.В. Миленин, Ю.Н. Свешников

Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, Киев E-mail: konakova@isp.kiev.ua Государственное предприятие НИИ "Орион", Киев, Украина ЗАО "Малахит-Элма", Москва, Россия

Поступило в Редакцию 8 августа 2005 г.

Представлены результаты исследований новой системы металлизации невыпрямляющих контактов к *n*-GaN. Контактная металлизация включает слои Au(200 nm)-Ti(TiB_x)(100 nm)-Al(20 nm)-Ti(50 nm). В качестве диффузионного барьера использован слой TiB_x. Показано, что контакты с диффузионным слоем TiB_x сохраняют слоевую структуру и электрофизические параметры до температуры 700°С, тогда как контактная система Au-Ti-Al-Ti деградирует после быстрой термической обработки при $T = 700^{\circ}$ С. Повышение температуры обработки до 900°С приводит к "размытию" слоевой структуры контакта Au-TiB_x-Al-Ti-GaN. Рассмотрены физические причины, обусловливающие изменение параметров подобных контактных систем.

Нитрид галлия — широкозонный полупроводник с высокой подвижностью и термостабильностью рассматривается как перспективный материал для изготовления широкого спектра твердотельных приборов, в том числе СВЧ-диапазона [1–3]. В то же время отсутствие достаточных сведений о механизмах контактообразования и связанных с ними физико-химических процессов, происходящих на границах раздела при формировании контактов, является в настоящее время основным ограничением реализации потенциальных преимуществ приборов на этом материале. Важно не только изучить особенности этих процессов, но и выявить возможности исключения нежелательных реакций материалов, образующих контакт и влияющих на электрофизические свойства перехода металл—GaN.

88

В связи с отмеченным целью данной работы было проведение комплексных исследований процессов контактообразования в структурах многослойной металлизации $Au-Ti(TiB_x)-Al-Ti-n-GaN-GaN$ и выяснение возможных факторов, влияющих на их термостойкость.

Методика эксперимента. В работе исследовались структуры Au-Ti(TiB_x)-Al-Ti-*n*-GaN. Многослойные контактные слои изготовлены магнетронным напылением пленок атомарных металлов и квазиаморфного сплава TiB_x. Толщины слоев составляли: Au(200 nm)-Ti(100 nm), TiB_x(100 nm), Al(20 nm), Ti(50 nm). Напыление проводилось на нагретые до 150–200°С пленки *n*-типа GaN толщиной ~ 1 μ m с концентрацией донорной примеси ~ 10¹⁷ cm⁻³, выращенные на сапфире. Поверхность пленки подвергалась фотонной очистке. После напыления слоев Ti и Al образцы отжигались при T = 900°C в течение t = 30 s в атмосфере N₂. Затем напылялись либо пленки TiB_x, либо Ti и слой Au.

Исследовались образцы двух типов: тестовые и приборные структуры. Тестовые структуры представляли собой образцы размером 5×5 mm со сплошным слоем металлизации, на которых проводились структурные исследования. Приборные структуры в виде чипов диаметром $100\,\mu$ m монтировались в металлорубиновые корпуса. Для изучения механизмов формирования и устойчивости контактов к термическим воздействиям использовался ряд взаимодополняющих методов: Оже-спектроскопия, микроскопия атомных сил, стационарные вольтамперные характеристики (BAX).

Экспериментальные результаты и их обсуждение. Измеренные ВАХ контактов свидетельствовали об их омическом поведении и не изменяли своих характеристик при чередовании слоев $Ti \rightarrow TiB_x$. Вычисленные величины контактных сопротивлений для этих контактных структур изменялись в пределах $\rho_k \approx (1 \div 3) \cdot 10^{-6} \Omega \cdot \text{сm}^2$. Последнее указывает, что основным фактором, обеспечивающим омический переход, являются тведофазные реакции между GaN и примыкающими к нему слоями Al и Ti. Слои Ti и TiB_x играют роль диффузионных барьеров.

Такие же значения контактных сопротивлений для металлизации на основе Ti/Al были зафиксированы и в работах [1,2] при оптимальных условиях термообработок. Причем оптимальные условия термоотжига зависели от способа подготовки поверхности полупроводника, уровня легирования, условий осаждения и толщин металлических слоев и изменялись в широком диапазоне от 600 до 900°С.

В наших экспериментах отжиг до 700°С не изменял сопротивления контактных структур со слоями TiB_x и резко (на 1.5-2 порядка) увеличивал ρ_k в структурах второго типа, в которых буферный слой формировался титаном. Увеличение контактного сопротивления при отжиге может быть следствием структурно-фазовой неупорядоченности переходных слоев, возникающих из-за химических реакций между атомами металлов и полупроводника на межфазной границе контакта. Качественным подтверждением этих процессов являются изменения морфологии границ раздела металл-полупроводник при термообработках.

Результаты морфологических исследований поверхностей GaN после удаления металлизированных слоев, выполненных с помощью микроскопии атомных сил, представлены в таблице.

Влияние быстрой термической обработки на морфологию границы раздела металл-GaN

Тип структур	Тип обработки	R_q , nm	R_a , nm	R_y , nm
n-GaN-Al ₂ O ₃	Исходн.	1.4	1.1	24.8
Au-TiB _x -Al-Ti-n-GaN	Исходн.	12.2	8.4	182.3
Au-TiB _x -Al-Ti-n-GaN	$700^{\circ}C$	47.1	36.4	372.4
Au-Ti-Al-Ti-n-GaN	Исходн.	18.5	14.3	208.8
Au-Ti-Al-Ti-n-GaN	700°C	46	35.2	432.2

Здесь: R_q — среднеквадратичная шероховатость; R_a — среднеарифметическая шероховатость; R_y — разница между самой высокой и самой низкой точками поверхности.

Можно отметить, что параметры шерховатости поверхностей после удаления металлизации отличаются от соответствующих характеристик на исходных поверхностях: имеет место значительное увеличение размеров шероховатостей. Причем для контактов с отсутствием слоя TiB_x эта особенность проявляется сильнее.

Отжиг приводит к увеличению шероховатости поверхности, причем в структурах со слоями TiB_x эта геометрическая неоднородность проявляется сильнее. Наблюдаемые изменения морфологии поверхностей могут быть следствием двух существенно различных процессов: обычной межфазной диффузии или более сложного процесса, связанного с образованием и ростом включений новых фаз, т.е. реакционной диффузии.

Рис. 1. Профили распределения компонентов в контакте GaN-Ti-Al-TiB₂-Au до (*a*) и после (*b*) отжига в атмосфере азота при 700°С (30 s). *t* — длительность послойного распыления металлизации.

Для выявления доминирующих механизмов образования межфазных границ были исследованы особенности атомных распределений в изученных структурах до и после термообработок.

На рис. 1 представлены профили распределения компонент контактов $Au-TiB_x-Al-Ti-GaN$. Полученные атомные распределения характеризуют процессы твердотельных взаимодействий на различных границах контактных структур и прежде всего на переходе металл-полупроводник, определяющие электрофизические свойства контактов.

Основываясь на результатах [1,2] можно полагать, что в условиях проведенной обработки доминирующими являются по крайней мере три типа реакций:

$$\operatorname{Ti} + \operatorname{GaN} \to \operatorname{TiN}_{x} + \operatorname{GaN}_{1-x},$$
 (1)

$$Al + GaN \to Al_x Ga_{1-x}N, \qquad (2)$$

$$\mathrm{Ti} + 3\mathrm{Al} \to \mathrm{Al}_3\mathrm{Ti},\tag{3}$$

что должно приводить к химически неоднородной границе и, как следствие, увеличению ее структурной неоднородности (см. таблицу).

Рис. 2. Профили распределения компонентов в контакте GaN–Ti–Al–Ti–Au до (a) и после (b) отжига в атмосфере азота при 700°С (30 s). t — длительность послойного распыления металлизации.

Однако полученнные данные Оже-спектроскопических исследований указывают на более сложные, чем описывалось уравнениями (1)–(3), процессы взаимодействий на границе раздела, связанные с активным участием в них атомов кислорода. По-видимому, эти же реакции, формирующие локальные оксинитридные фазы, являются доминирующими при отжигах 700°С, что и обусловливает дальнейшее увеличение шероховатостей поверхности полупроводника.

При отжигах 900°С слоевая структура контакта размывается за счет вклада реакционной диффузии компонентов контактной структуры [4]. Для сравнения на рис. 2 представлены атомные распределения в контактной структуре при замене слоя TiB_x на слой Ti такой же толщины после отжига при 700°С. Видно, что имеют место изменения в слоевой структуре этого контакта, сопоставимые с теми, которые наблюдаются в контактах со слоями TiB_x после отжига 900°С.

В заключение остановимся на причинах, обусловливающих формирование невыпрямляющих контактов в исследуемых структурах. Хорошо известно, что трансформация барьерного контакта в невыпрямляющий происходит, если в приповерхностном слое полупроводника

сформирован антизапорный (слабо запорный) изгиб зон или создана предельно высокая концентрация основной примеси. По-видимому, обе эти причины имеют место в исследованных контактных структурах.

Химическая связь в GaN не является чисто ковалентной и поэтому для этого соединения справедливым является утверждение, согласно которому полупроводники с большей ионной составляющей связи формируют барьеры типа Шоттки. Учитывая работы выхода TiN (3.87 [5]) и GaN (4.1 eV [6]), можно полагать, что величина потенциального барьера в контакте составляет $\cong 0.2 \text{ eV}$ и не является причиной низкого ρ_k , но объясняет экспериментально наблюдаемые малые значения контактного сопротивления.

Более предпочтительной является модель формирования приповерхностного n^+ -слоя, обусловленного твердофазными реакциями. В этом случае, как было показано в [7,8], формирование тонкой прослойки соединений азота приводит к образованию в приповерхностной области слоя с высокой концентрацией носителей. Так, образование 10 nm слоя TiN обеспечивает доминирование туннельного тока в контакте ρ_k , так как концентрация носителей в приконтактном слое составляет $\cong 10^{20}$ cm⁻³. По-видимому, процессы, связанные с окислением продуктов реакций, не оказывают существенной роли на механизм токопереноса (уровень легирования не изменяется), а лишь незначительно изменяют ρ_k за счет изменения проводимости продуктов межфазных взаимодействий, подвергнувшихся окислению.

Таким образом, хотя полученные на исследованных образцах значения ρ_k несколько отличаются (примерно на полпорядка завышены) от предельно низких для переходов металл—GaN [9], и в 2÷3 раза ниже, чем в контактах к GaN с TiN диффузионными барьерами [10,11], они сохраняют свои параметры при термовоздействиях выше 700°С, т. е. использование в системах металлизации боридов титана позволяет существенно повысить порог их термической деградации.

Список литературы

- [1] Markoc H. Nitride Semiconductors and Devices. Springer. 1999.
- [2] Kordos P. // The Third International Euroconference on Advanced Semiconductor Devices. ASDAM, 2000. P. 47.
- [3] Shur M.S. // Solid-State Electronics. 1998. V. 42. N 12. P. 2131.
- [4] Болтовец Н.С., Иванов В.Н., Конакова Р.В. и др. // ФТП. 2004. Т. 38. № 7. С. 769.

- [5] Фоменко В.С. Эмиссионные свойства материалов. Киев: Наук. думка, 1981. 339 с.
- [6] Данилин В.Н., Докучаев Ю.П., Жукова Т.А. и др. Мощные высокотемпературные и радиационно-стойкие СВЧ приборы нового поколения на широкозонных гетеропереходных структурах AlGaN/GaN / Обзоры по электронной технике. М.: ГУП НПП "Пульсар", 2001. Сер. 1. В. 1. 137 с.
- [7] Lin Q.Z., Lau S.S. // Solid. State Electronics. 1998. V. 42. N 2. P. 677.
- [8] Saparna Pal, Takashi Sugino. // Appl. Surface Science. 2000. V. 161. P. 263.
- [9] Mohammad S. Noor. // J. Appl. Phys. 2004. V. 95. N 12. P. 7940.
- [10] Kaminska E., Piotrowska A., Guziewicz M. et al. // Mat. Res. Soc. Symp. Proc. 1997. P. 1055.
- [11] Mohney S.E., Luther B.P., Wolter S.D. et al. // 4th Int. High Temperature Electronics Conf. (HiTEC). Albuquerqui, USA. 1998. P. 134.