от О поверхностной энергии криокристаллов

© М.Н. Магомедов

Институт проблем геотермии Дагестанский научный центр РАН, Махачкала E-mail: mahmag@iwt.ru

Поступило в Редакцию 24 мая 2005 г.

Исходя из потенциала межатомного взаимодействия типа Ми-Леннарда-Джонса, получено выражение для расчета поверхностной энергии при T = 0 К и P = 0, учитывающее вклад "нулевых колебаний". Конкретные расчеты проведены для криокристаллов: кристаллов инертных газов и изотопов водорода, для которых энергия "нулевых колебаний" сравнима с энергией межатомного взаимодействия. Обнаружено, что значения поверхностной энергии σ_{00} имеют высоко коррелированные зависимости от массы атома (или молекулы) *m*, от температуры плавления *T_m*, от глубины потенциала взаимодействия D/k_b . Функция σ_{00} возрастает с ростом аргументов *m*, T_m , D/k_b нелинейно. Отношение σ_{00} к поверхностному натяжению жидкой фазы при T_m : $\sigma_{00}/\sigma_{liquid}$ имеет однотипную высоко коррелированную зависимость как от *m*, так и от T_m и от D/k_0 . Функциональную зависимость $\sigma_{00}/\sigma_{liquid}$ от *m*, T_m или D/k_b можно разбить на два линейных участка: для "квантовой" и для "классической" области. При этом в "квантовой" области отношение $\sigma_{00}/\sigma_{liquid}$ меньше, чем в "классической" но рост функции $\sigma_{00}/\sigma_{liquid}$ с увеличением m, T_m или D/k_b в "квантовой" области происходит много сильнее.

Изучение поверхностных свойств криокристаллов представляет собой сложную задачу, ибо в этих веществах энергия "нулевых колебаний" соизмерима с энергией притяжения атомов даже в жидкой фазе, а характеристическая частота колебаний решетки имеет заметную зависимость от температуры [1]. С другой стороны, экспериментальные оценки поверхностной энергии при температурах, близких к абсолютному нулю, очень затруднены. В связи с этим в данной работе произведена оценка поверхностной энергии криокристаллов, полностью учитывающая энергию "нулевых колебаний".

1

Пусть атомы взаимодействуют между собой посредством парного потенциала Ми-Леннарда-Джонса [1-3]

$$\varphi(r) = [D/(b-a)] \Big\{ a [r_0/(c+r)]^b - b [r_0/(c+r)]^a \Big\}.$$
(1)

Здесь D и r_0 — глубина и координата минимума потенциальной ямы, b и a — параметры потенциала, $c = [6k_yV/\pi N_A]^{1/3}$ — расстояние между центрами ближайших атомов, k_y — коэффициент упаковки, V — молярный объем, N_A — число Авогадро.

Используя для колебатального спектра нанокристалла модель Эйнштейна и приближение "взаимодействия только ближайших соседей", в работе [4] было получено выражение для удельной (приходящуюся на единицу площади) поверхностной энергии нанокристалла из N атомов, ограненного гранями (100), при произвольной температуре T.

В случае макрокристалла (т.е. при $N \to \infty$), полученное в [4] выражение сводится к виду

$$\sigma(T,V) = -(k_3/12c^2\alpha_s) \Big\{ DU(R) + 3k_b(\Theta/k_3)E(\Theta/T)[\Theta_0/(\Theta_o + A_w\xi)]\vartheta(T/\Theta_0) \Big\}, \quad (2)$$

где k_3 — первое координационное число в объеме кристалла, k_b — постоянная Больцмана, Θ_0 — температура Эйнштейна при T = 0 K;

$$U(R) = (aR^{b} - bR^{a})/(b - a), \quad R = r_{0}/c; \quad \alpha_{s} \cong (\pi/6k_{y})^{2/3}; \quad (3)$$
$$E(\Theta/T) = 0.5 + [\exp(\Theta/T) - 1]^{-1};$$
$$\vartheta(T/\Theta_{0}) = 1 - (T/\Theta_{0}) \Big\{ \partial \ln[\lambda(T/\Theta_{0})]/\partial(T/\Theta_{0}) \Big\}.$$

Выражение для характеристической температуры Эйнштейна макрокристалла при межатомном потенциале (1) было получено в работах [3,5] в виде

$$\Theta(T) = A_w \xi \left\{ -1 + \left[1 + (6D/k_b A_w \xi^2) \right]^{1/2} \right\} \lambda(T/\Theta_0),$$
(4)

 $A_w = K_R[5k_3ab(b+1)/192(b-a)]R^{b+2}, \quad K_R = \hbar^2/k_b r_0^2 m, \quad \xi = 9/k_3.$

Здесь m — масса атома, \hbar — постоянная Планка. Функция $\lambda(T/\Theta_0)$ учитывает изменение характеристической частоты колебаний с тем-

пературой. Как было показано в [3], функция $\lambda(T/\Theta_0)$ при T = 0 К и при высоких температурах ($T \gg \Theta_0$) равна единице. Заметные же изменения данной функции могут наблюдаться только на интервале: $0 < T \ll \Theta_0$.

В случае высоких температур функции из (3) упрощаются к виду: $E(\Theta/T < 1) \cong T/\Theta_0$ и $\vartheta(T/\Theta_0 \gg 1) \cong 1$. Кроме этого, в случае малости энергии "нулевых колебаний" по сравнению с энергией химической связи, т.е. при $6D \gg k_b A_w \xi^2$ (это условие не выполняется для "квантовых кристаллов" типа He, H₂, Ne), выражение (4) можно преобразовать к виду: $\Theta_0 \cong (6DA_w/k_b)^{1/2}$. Тогда из (2) можно получить выражение для расчета $\sigma(N = \infty)$ при нулевом давлении (т.е. при R = 1) и при температуре плавления T_m кристалла в виде

$$\sigma(T_m, R = 1) = (k_b/4r_0^2\alpha_s)[(k_3D/3k_b) - T_m].$$
(5)

Именно это выражение и было использовано в [4] для расчета поверхностной энергии элементарных макрокристаллов и полупроводников с различной кристаллической структурой. Результаты расчетов поверхностной энергии для 25 макрокристаллов с различной структурой при температуре их плавления показали хорошее согласие с экспериментальными оценками.

Заметим, что из выражения (5) может последовать ошибочный вывод, что при T = 0 К функция σ определяется только структурой и значением D и не имеет зависимости от энергии "нулевых колебаний", т.е. от квантовых свойств кристалла. Это, конечно же, не так. Для случая T = 0 К, исходя из формулы (2), легко получить

$$\sigma(T = 0 \text{ K}, V) = -(k_3/12c^2\alpha_s) \Big\{ DU(R) + (3/2)k_b(\Theta_0/k_3)[\Theta_0/\Theta_0 + A_w\xi)] \Big\}.$$
 (6)

Таким образом, при T = 0 К зависимость $\sigma(m)$ определяется вкладом "нулевых колебаний" и потому для "не квантовых" веществ (например, металлов) является очень слабой.

Для криокристалла, у которого энергия "нулевых колебаний" при T = 0 К и P = 0 (т.е. при $c = r_0$) сравнима с энергией межатомного

взаимодействия D, удельная поверхностная энергия грани (100) вычисляется по формуле, вытекающей из (6):

$$\sigma_{00} = (1/c^2 \alpha_s) \Big\{ k_3 D/12 \big\} - [3k_b \Theta_D^2/32(\Theta_D + (3/4)A_w \xi)] \Big\},$$
(7)

где $\Theta_D = (4/3)\Theta_0(R=1)$ — температура Дебая макрокристалла при T = 0 К и P = 0.

В таблице представлены результаты расчетов: Θ_D — температуры Дебая, γ_{00} — параметра Грюнайзена, L_{00} — энергии сублимации, V_{00} — молярного объема, σ_{00} — удельной поверхностной энергии грани (100) при T = 0 К и P = 0. При этом наряду с (3) и (7) использовались выражения, полученные в работах [2,3,5]:

$$\gamma_{00} = [(b+2)/6][1 + (4A_w\xi/3\Theta_D)]^{-1},$$

$$L_{00}/N_A = (k_3/2)D - (9/8)k_b\Theta_D, \quad V_{00} = \pi N_A r_0^3/6k_y.$$
(8)

Расчеты, проведенные для криокристаллов (кристаллов инертных газов и изотопов водорода, для которых энергия "нулевых колебаний" сравнима с энергией межатомного взаимодействия), показали хорошее согласие с экспериментальными оценками для величин Θ_d , γ_{00} , L_{00} и V₀₀ из [1]. К сожалению, нам неизвестны экспериментальные оценки σ_{00} для криокристаллов из таблицы. В связи с этим мы сравнили расчетные значения σ_{00} с экспериментальной величиной поверхностного натяжения жидкой фазы σ_{liquid} при T_m и P = 0 из [6]. Как видно из таблицы, отношение $\sigma_{00}/\sigma_{liquid}$ для изотопов водорода монотонно растет от 1.098 (*p*-H₂) до 1.32 (*T*₂), а для кристаллов инертных газов от 1.455 (Ne) до 1.609 (Xe). Это согласуется с результатами работы [7], где для макрокристаллов элементарных металлов и полупроводников было обнаружено возрастание отношения $\sigma_{solid}/\sigma_{liquid}$ с ростом значения температуры плавления Т_m. При этом, как обнаружено в [7] для металлов и полупроводников, величина $\sigma_{solid}/\sigma_{liquid}$ изменяется в интервале 1.1-1.7, что хорошо согласуется с интервалом изменения значения $\sigma_{00}/\sigma_{liquid}$ из таблицы.

Анализ приведенных в таблице данных позволил сделать следующие выводы:

1. Рассчитанные значения σ_{00} и оценки σ_{liquid} из [6] имеют однотипные (симбатные) высоко коррелированные зависимости от *m* (рис. 1),

Параметры потенциала Ми–Леннарда–Джонса (1) для криокристаллов (ГЦК кристаллов инертных газов и ГПУ кристаллов изотопов водорода) были определены по методу, описанному в работах [2,3]. Из данных параметров рассчитаны значения: температуры Дебая, параметра Грюнайзена, энергии сублимации, молярного объема, удельной поверхностной энергии грани (100) при T = 0 К и P = 0 (номера формул приведены в скобках). Для всех криокристаллов: $k_3 = 12$; $k_y = 0.7405$; $\xi = 0.75$; $\alpha_s = 0.7937$

Кри- сталл	<i>m</i> , u	$r_0,$ 10^{-10} m	$D/k_b,$ K	b	а	$\Theta_D(4),$ K	$\gamma_{00}(8)$	L ₀₀ (8), J/mol	V ₀₀ (8), cm ³ /mol	$\sigma_{00}(7),$ mJ/m ²	$\sigma_{liquid}[6]^*,$ mJ/m ²	$\sigma_{00}/\sigma_{liquid}$
Ne	20.18	3.1563	52.59	21.39 17.84	5.83 6.20	74.6	3.30 2.80	1925.9	13.39	8.03	5.519 (25 K)*	1.455
Ar	39.95	3.7555	173.60	16.69 15.42	6.62 6.70	93.3	2.95 2.75	7787.4	22.56	20.39	13.39 (84 K)	1.523
Kr	83.8	3.9922	238.37	15.92 16.04	6.56 6.55	71.7	2.90 2.92	11220.6	27.095	25.33	16.29 (116 K)	1.555
Xe	131.29	4.3358	330.92	15.42 14.81	6.73 6.75	64.0	2.85 2.75	15909.8	34.71	30.11	18.71 (162 K)	1.609
<i>p</i> -H ₂	2.016	3.791	37.53	23.57 18.71	5.21 5.77	118.5	2.47 2.00	763.6	23.207	3.24	2.95 (14 K)	1.098
<i>o</i> -D ₂	4.028	3.604	44.56	19.91 15.53	6.04 6.43	114.0	2.50 2.00	1156.58	19.95	4.59	3.751 (19 K)	1.224
HD	3.022	3.682	41.64	21.13 16.59	5.70 6.16	116.20	2.49 2.00	990.0	21.25	4.00	3.377 (17 K)	1.184
HT	4.024	3.604	44.55	19.91 15.53	6.04 6.43	114.00	2.50 2.00	1156.0	19.94	4.59	3.637 (18 K)	1.262
DT	5.030	3.544	46.82	19.18 14.90	6.31 6.64	112.00	2.51 2.00	1287.5	18.96	5.09	4.025 (20 K)	1.265
T_2	6.032	3.495	48.66	18.69 14.47	6.52 6.82	110.20	2.52 2.00	1395.0	18.18	5.52	4.181 (21 K)	1.320

* Поверхностное натяжение жидкой фазы σ_{liquid} и температура плавления T_m (в скобках), при которой оно оценено в [6] при P = 0.

Рис. 1. Зависимость σ_{00} (крестики) и σ_{liquid} (точки) от массы атома или молекулы для криокристаллов из таблицы. Сплошная линия — аппроксимация данных для $\sigma_{00}(m)$ кубическим полиномом вида $\sigma_{00} = 2.26497 + 0.51855m - 0.00363m^2 + 9.78294 \cdot 10^{-6}m^3$, с коэффициентом корреляции $R_{corr} = 0.98011$. Пунктир — аппроксимация данных для $\sigma_{liquid}(m)$ из [6] кубическим полиномом вида $\sigma_{liquid} = 2.32118 + 0.30425m - 0.00194m^2 + 4.2996 \cdot 10^{-6}m^3$, $R_{corr} = 0.97529$. Кривые пересекаются в точке: $m \cong 0.335$ u; $\sigma \cong 2.4$ mJ/m².

от T_m (рис. 2), от D/k_b . При этом функции σ_{00} и σ_{liquid} возрастают с ростом аргументов m, T_m , D/k_b явно не линейно.

2. На всех трех графиках обнаружено пересечение аппроксимирующих кубичных зависимостей при одинаковом значении удельной поверхностной энергии: $\sigma \cong 2.4 \text{ mJ/m}^2$ при $m \cong 0.335 \text{ u}$ (рис. 1), $T_m \cong 12 \text{ K}$ (рис. 2), $D/k_b \cong 33 \text{ K}$. Это указывает на то, что с ростом "квантованности" вещества разница между твердой и жидкой фазами уменьшается

Рис. 2. Зависимость σ_{00} (крестики) и σ_{liquid} (точки) от температуры плавления для криокристаллов из таблицы. Сплошная линия — аппроксимация данных $\sigma_{00}(T)_m$ кубическим полиномом вида $\sigma_{00} = -2.64663 + 0.44535T_m - 0.0025T_m^2 + 6.16023 \cdot 10^{-6}T_m^3$, $R_{corr} = 0.99833$. Пунктир — аппроксимация $\sigma_{liquid}(T)_m$ из [6] кубическим полиномом вида $\sigma_{liquid} = -0.401 + 0.247T_m - 0.00115T_m^2 + 2.18598 \cdot 10^{-6}T_m^3$, $R_{corr} = 0.99918$. Кривые пересекаются в точке $T_m \approx 12$ K; $\sigma \approx 2.4$ mJ/m².

и исчезает при определенном значении массы атома (в данном случае при $m \leqslant 0.335$ u).

3. Отношение рассчитанной поверхностной энергии при T = 0 К и P = 0 к поверхностному натяжению жидкой фазы при T_m и P = 0 $\sigma_{00}/\sigma_{liquid}$ имеет однотипную (симбатную) высоко коррелированную зависимость как от m (рис. 3), так и от T_m (рис. 4), и от D/k_b .

Рис. 3. Зависимость отношения $\sigma_{00}/\sigma_{liquid}$ от массы атома (или молекулы) для криокристаллов из таблицы. Линии — аппроксимация полученных данных линейными полиномами вида: при $m \leq m(T_2) = 6.032$ u: $\sigma_{00}/\sigma_{liquid} = 1.01502 + 0.05229m$, $R_{corr} = 0.96165$; при $m \geq m(\text{Ne}) = 20.18$ u: $\sigma_{00}/\sigma_{liquid} = 1.44947 + 0.00125m$, $R_{corr} = 0.96165$, где R_{corr} — коэффициент корреляции.

4. Функциональную зависимость $\sigma_{00}/\sigma_{liquid}$ от *m*, T_m или D/k_b для криокристаллов можно разбить на два линейных участка: для "квантовой" ($m \le m(\text{Ne}) = 20.18$ u) и для "классической" ($m \ge m(\text{Ne}) = 20.18$ u) области (рис. 3 и 4). При этом в "квантовой" области отношение $\sigma_{00}/\sigma_{liquid}$ меньше, чем в "классической", но рост функции $\sigma_{00}/\sigma_{liquid}$ с увеличением *m*, T_m или D/k_b в "квантовой" области происходит много сильнее.

Рис. 4. Зависимость отношения $\sigma_{00}/\sigma_{liquid}$ от температуры плавления для криокристаллов из таблицы. Линии — аппроксимация линейными полиномами: при $T_m \leq T_m(\text{Ne}) = 25 \text{ K}$: $\sigma_{00}/\sigma_{liquid} = 0.64861 + 0.03185T_m$, $R_{corr} = 0.97927$, при $T_m \geq T_m(\text{Ne}) = 25 \text{ K}$: $\sigma_{00}/\sigma_{liquid} = 1.42738 + 0.00112T_m$, $R_{corr} = 0.9997$, где R_{corr} — коэффициент корреляции.

5. Величины σ_{00} и σ_{liquid} , а также и их отношение $\sigma_{00}/\sigma_{liquid}$ монотонно возрастают с ростом массы изотопа (см. таблицу). Такая изотопная зависимость для $\sigma(m)$ присуща не только квантовым, но и классическим кристаллам. Причины этого подробно обсуждены в работе [8] на примере алмаза и лития.

Автор благодарит А.Д. Филенко, К.Н. Магомедова и З.М. Сурхаеву за полезные дискуссии и всестороннюю помощь в работе.

Работа выполнена при финансовой поддержке Отделения ЭММПУ РАН (контракт № 7/067–095/05.05.04–229).

Список литературы

- [1] Криокристаллы / Под ред. Б.И. Веркина и А.Ф. Приходько. Киев: Наук. думка, 1983. 526 с.
- [2] Магомедов М.Н. // Журн. физ. химии. 1988. Т. 62. № 8. С. 2103–2108.
- [3] Магомедов М.Н. // ФТТ. 2003. Т. 45. № 1. С. 33-36.
- [4] Магомедов М.Н. // ФТТ. 2004. Т. 46. № 5. С. 924–937.
- [5] Магомедов М.Н. // Журн. физ. химии. 1987. Т. 61. № 4. С. 1003–1009.
- [6] Байдаков В.Г. Поверхностное натяжение ожиженных газов. Обзоры по теплофизическим свойствам веществ / Теплофизический центр. М.: ИВТАН, 1988. № 1(69). С. 3–112.
- [7] Кулиш У.М. // Физическая химия поверхностных явлений в расплавах. Киев: Наук. думка, 1971. С. 46–51.
- [8] Магомедов М.Н. // Письма в ЖТФ. 2005. Т. 31. № 9. С. 50–57.