05 Особенности поведения коэрцитивной силы в напряженных эпитаксиальных пленках ферритов-гранатов

© С.В. Дубинко, А.С. Недвига, В.Г. Вишневский, А.Н. Шапошников, В.С. Ягупов, А.Г. Нестерук, А.Р. Прокопов

Таврический национальный университет им. В.И. Вернадского, Симферополь, Украина E-mail: domain@home.cris.net

Поступило в Редакцию 17 июня 2005 г.

Исследовано влияние относительного рассогласования периодов решеток пленки и подложки в диапазоне от 0.5 до 0.85% на поведение коэрцитивной силы эпитаксиальных пленок ферритов-гранатов состава (Bi, Sm, Lu, Ca)₃ (Fe, Sc, Ga, Al)₅O₁₂, синтезированных на подложках гадолиний-галлиевого граната ориентации (111). Обнаружено, что коэрцитивная сила ЭПФГ при увеличении относительного рассогласования периодов решеток пленки и подложки сначала увеличивается, а по достижении максимального значения начинает убывать. Показано, что максимальное значение коэрцитивной силы обусловлено периодическими локализованными напряжениями, вызванными сеткой дислокаций несоответствия, период которых сравним с шириной доменных границ. Период локализованных напряжений определяется величиной рассогласования периодов решеток пленки и подложки.

Эпитаксиальные пленки ферритов-гранатов (ЭПФГ) находят применение в устройствах термомагнитной записи информации [1], топографирования и визуализации неоднородных магнитных полей. Особое место занимают ЭПФГ с повышенной коэрцитивной силой, которые позволяют визуализировать слабые неоднородные магнитные поля с напряженностью порядка 0.1 Ое и пространственными периодами менее 1 μ m методом репликации [2]. В [3–5] было установлено влияние относительного рассогласования периодов решеток пленки и подложки f на изменение коэрцитивной силы H_c ЭПФГ. Авторами этих работ было показано, что H_c значительно увеличивается в диапазоне f от 0.2 до 0.5%, и сделано предположение о дальнейшем увеличении H_c при f, превышающем 0.5%. Результаты экспериментальных исследований вли-

68

Нами исследовалось влияние относительного рассогласования периодов решеток пленки и подложки, превышающего 0.5%, на поведение коэрцитивной силы ЭПФГ.

Для исследования были синтезированы ЭПФГ состава (Bi, Sm, Lu, Ca)₃ (Fe, Sc, Ga, Al)_{0.5}O₁₂ на подложках гадолиний-галлиевого граната ориентации (111). Синтез проводился методом изотермической жидкофазной эпитаксии из растворов Bi_2O_3 –PbO– B_2O_3 . Величины f варьировались изменением температуры синтеза и молярных соотношений компонентов шихты.

Коэрцитивная сила пленок определялась по магнитооптическим петлям гистерезиса, полученным на магнитооптическом поляриметре, а f — по стандартной методике с помощью рентгеновского дифрактометра ДРОН-3. Эффективные поля одноосной анизотропии, поля насыщения и равновесные периоды доменной структуры пленок измерялись магнитооптическим методом. Эффективные поля одноосной анизотропии для всех ЭПФГ равнялись 10³ Ое, поля насыщения находились в пределах от 149 до 290 Ос, значения H_c — от 25 до 70 Ое, равновесные периоды доменной структуры, измеренные после воздействия на ЭПФГ переменным магнитным полем, — от 4.6 до $8.0\,\mu{\rm m}$, температура Нееля T_N пленок — от 55 до 97°С. Толщина пленок после полировки поверхности равнялась 3-4 µm. Исследуемые ЭПФГ имели f от 0.55 до 0.85%. При указанных значениях f ЭПФГ имели не нарушенную сплошность поверхности и удельное фарадеевское вращение, достаточное для визуализации неоднородных магнитных полей. Дальнейшее увеличение f приводило к нарушению сплошности поверхности ЭПФГ, резкому ухудшению их оптических свойств и отслоению эпитаксиального слоя от поверхности подложки.

Экспериментальные исследования зависимости коэрцитивной силы ЭПФГ от f показали, что при величине f, приблизительно равной 0.7%, H_c достигает максимума (рис. 1).

Рис. 1. Экспериментальная зависимость H_c от f.

Можно предположить, что увеличение, переход через максимум и дальнейшее уменьшение H_c при увеличении f может быть вызвано формированием сетки дислокаций несоответствия в пленке. Сетка дислокаций несоответствия создает периодические локализованные напряжения и, как следствие, потенциальный рельеф с периодом l, препятствующий движению доменных границ, что ведет к изменению H_c [7].

Авторы работ [8–10], объясняя поведение коэрцитивной силы по теории напряжений, приходят к выводу, что H_c будет иметь максимальную величину для данного магнетика, если период локализованных напряжений в нем приблизительно равен ширине доменной границы. Поэтому логично принять l равным междислокационному расстоянию L_d .

Для исследуемых ЭПФГ были построены зависимости ширины доменной границы δ (блоховского и неелевского типов) и L_d от f.

Значения δ вычислялись по формулам [11]: для блоховской границы $\delta_{\rm B} = \pi (A/K_u)^{1/2}$, для неслевской — $\delta_{\rm N} = \pi [A/(K_u + 2\pi M_s^2)]^{1/2}$,

Рис. 2. Зависимости $\delta_{\rm B}$ (1), $\delta_{\rm N}$ (2) и L_d (3) от f.

где A — константа обмена, K_u — константа одноосной анизотропии, M_s — намагниченность насыщения. Значения A рассчитывались по формуле [12]: $A = A_0(T_N - T)/(T_{N0} - T)$, где $A_0 = 3.7$ рJ/m — константа обмена железо-иттриевого граната, $T_{N0} = 560$ K — температура Нееля железо-иттриевого граната, T = 300 K.

Значения K_u вычислялись из измеренных эффективных полей одноосной анизотропии пленок, M_s вычислялись с использованием полей насыщения, равновесных периодов доменной структуры и толщины пленок [12]. Значения L_d вычислялись по формуле [13,14]: $L_d = kb/f$, где $b = 2a_f a_s/(a_f + a_s)$ — численное значение вектора Бюргерса дислокаций, a_f — период решетки пленки, $a_s = 12.383$ Å — период решетки подложки [15], $f = [(a_f - a_s)/a_f] \cdot 100\%$. Для пленок с ориентацией (111) коэффициент k = 1 для краевых дислокаций и k = 0.3 для 60-градусных дислокаций [13].

Известно, что сетка дислокаций несоответствия может быть образована краевыми дислокациями или наклонными 60-градусными дислокациями. На рис. 2 представлены зависимости $\delta_{\rm B}(f)$, $\delta_{\rm N}(f)$ и $L_d(f)$, где L_d — расстояние между 60-градусными дислокациями. Видно, что зависимости $\delta_{\rm N}(f)$ и $L_d(f)$ пересекаются при значении f, соответствующем максимальной величине H_c на зависимости $H_c(f)$ (рис. 1). Для случая краевых дислокаций зависимости $\delta_{\rm B}(f)$ и $\delta_{\rm N}(f)$ не имеют точек пересечения с $L_d(f)$ в исследуемом диапазоне f.

Полученные результаты о равенстве δ_N и L_d для 60-градусных дислокаций в ЭПФГ с максимальным значением H_c согласуются с выводами теории напряжений. Можно предположить, что в ЭПФГ с максимальным значением H_c реализуются доменные границы неслевского или смешанного типа, а сетка дислокаций несоответствия образована преимущественно 60-градусными дислокациями.

В результате исследований установлено, что увеличение рассогласования периодов решеток пленки и подложки приводит сначала к возрастанию, а затем к убыванию коэрцитивной силы ЭПФГ. Показано, что максимальные значения коэрцитивной силы реализуются в ЭПФГ, у которых ширина доменных границ равна периоду локализованных напряжений, вызванных сеткой дислокаций несоответствия. Период локализованных напряжений определяется величиной рассогласования периодов решеток пленки и подложки.

Полученные результаты позволяют прогнозировать поведение коэрцитивной силы в ЭПФГ в широком диапазоне рассогласований периодов решеток пленки и подложки, а следовательно, синтезировать пленки с требуемыми величинами коэрцитивной силы.

Работа финансировалась Министерством образования и науки Украины по разделу бюджета Украины "Прикладные разработки по направлениям научно-технической деятельности высших учебных заведений".

Список литературы

- Inoue D., Itoh A., Kawanishi K. // Jap. J. Appl. Phys. 1980. V. 19. N 11. P. 2105–2114.
- [2] Mikherskii R.M., Dubinko S.V., Vishnevskii V.G. et al. // Functional Materials. 2002. V. 9. N 1. P. 115–118.

- [3] Балбашов А.М., Червоненкис А.Я., Шупегин М.Л. и др. // Микроэлектроника. 1982. Т. 11. В. 2. С. 126–133.
- [4] Gualtieri D.M., Tumelti P.F. // J. Appl. Phys. 1985. V. 57. N 8. P. 3879–3881.
- [5] Довбня Л.А., Наумов Д.Е., Храмов Б.В. // Письма в ЖЭТФ. 2001. Т. 73. В. 7. С. 410–413.
- [6] Jatau J.A., Pardavi-Horvath M., Della Torre E. // Appl. Phys. 1994. V. 75. N 10. P. 6106–6108.
- [7] Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М., 1990. 320 с.
- [8] Бозорт Р. Ферромагнетизм. М., 1956. 784 с.
- [9] Вонсовский С.В. Магнетизм. М., 1971. 1032 с.
- [10] Ивановский В.И., Черникова Л.А. Физика магнитных явлений. Семинары. М., 1981. 288 с.
- [11] *Лисовский В.Ф.* Физика цилиндрических магнитных доменов. М., 1979. 192 с.
- [12] Балбашов А.М., Лисовский Ф.В., Раев В.К. и др. Элементы и устройства на цилиндрических магнитных доменах: Справочник. М., 1987. 488 с.
- [13] Ван-дер-Мерве Дж.Х. // Монокристаллические пленки. М., 1966. С. 172-201.
- [14] Мильвидский М.Г. Полупроводниковые материалы в современной электронике. М., 1986. 144 с.
- [15] Палатник Л.С., Сорокин В.К. Материаловедение в микроэлектронике. М., 1978. 280 с.