06;07

Новый метод определения параметров электролюминесценции в тонкопленочных излучателях на основе ZnS:Mn

© Н.Т. Гурин, О.Ю. Сабитов

Ульяновский государственный университет E-mail: ido@ulsu.ru

Поступило в Редакцию 14 июня 2005 г.

Предложен новый метод определения вероятности излучательной релаксации центров свечения ${\rm Mn}^{2+}$ при их ударном возбуждении, зависимостей от времени коэффициента умножения электронов и числа ионизаций, приходящихся на один электрон, вышедший из области ионизации, а также длины ударного возбуждения этих центров из экспериментально определенных зависимостей мгновенного внутреннего квантового выхода, полученных в первом полупериоде напряжения возбуждения излучателей низкой частоты, при которой скорость нарастания тока не превышает скорости нарастания яркости.

Как известно, процесс люминесценции в тонкопленочных электролюминесцентных излучателях (ТП ЭЛИ) структуры металл-диэлектрик-полупроводник-диэлектрик-металл на основе ZnS: Mn обусловлен туннелированием носителей заряда с поверхностных состояний прикатодной границы раздела диэлектрик-полупроводник в сильном электрическом поле, последующим ударным возбуждением центров свечения Mn^{2+} и лавинным размножением носителей из-за ударной ионизации собственных дефектов структуры и примесей [1]. При этом основным параметром, определяющим эффективность процесса электролюминесценции, является внутренний квантовый выход η_{int} , зависящей в свою очередь от сечения ударного возбуждения центров $Mn^{2+}\sigma$, распределения концентрации этих центров по слою люминофора N(x), эффективной толщины слоя люминофора, в которой происходит ударное возбуждение этих центров d_{pe} , и вероятности излучательных переходов центров Mn^{2+} в невозбужденное состояние P_r [2].

17

Выражение для мгновенного квантового выхода имеет вид [2]:

$$\eta_{int}(t) = \sigma(t) \cdot N(x, t) \cdot d_{pe}(t) P_r(t), \qquad (1)$$

где t — время изменения напряжения возбуждения ТП ЭЛИ. Значения $\sigma(t)$ относительно слабо возрастают с ростом поля в слое люминофора от $3 \cdot 10^{-16}$ до $4 \cdot 10^{-16}$ сm² [1,3]. Распределение N(x, t) зависит от технологии изготовления ТП ЭЛИ и, как правило, неизвестно, значения $d_{pe}(t)$ определяются разностью толщины слоя люминофора d_p и толщины несветящейся прикатодной области слоя люминофора $x_c(t)$, составляющей от 20 nm для ТП ЭЛИ, полученных методом послойной атомной эпитаксии, до 200 nm для ТП ЭЛИ, полученных электроннолучевым испарением [1], зависят от распределения электрического поля в слое люминофора и в общем случае также неизвестны. Величины P_r определяются отношением постоянной спада люминесценции τ^* к постоянной излучательной релаксации центров $Mn^{2+} - \tau_r$:

$$P_r = \frac{\tau^*}{\tau_r},\tag{2}$$

уменьшаются с ростом концентрации центров Mn^{2+} [4,5], не зависят от амплитуды U_m , частоты f напряжения возбуждения U(t) [6] также точно неизвестны и составляют по различным оценкам от 0.22 до 0.4–0.5 [1,7,8].

Процесс ударной ионизации собственных дефектов структуры и примесей характеризуется коэффициентом умножения электронов

$$M(t) = \frac{n_p(t)}{n_{p_0}(t)},$$
(3)

где $n_p(t)$ — количество электронов, выходящих из области сильного поля, $n_{po}(t)$ — количество электронов, туннелировавших с поверхностных состояний прикатодной границы раздела диэлектрик—люминофор.

Коэффициент M(t) связан с числом ионизаций, приходящихся на один электрон, вышедший из области сильного поля:

$$m(t) = 1 - \frac{1}{M(t)}.$$
 (4)

Процесс ударной ионизации является конкурирующим по отношению к ударному возбуждению центров Mn^{2+} и существенно ограничивает внутренний квантовый выход η_{int} [8]. Однако точное описание влияния ударной ионизации на η_{int} отсутствует.

Зависимости: a - L(t), b, $e - \eta_{int}(t)$, $c - I_p(t)$, d, f - M(t); a, b, c, d: I - U(t), $2 - U_m = 120$ V, 3 - 125 V, 4 - 130 V, 5 - 140 V, 6 - 150 V, 7 - 160 V; образец № 1, вариант (+Al), $T_s = 1$ s; e, f: $I - T_s = 0.5$ s, 2 - 5 s, 3 - 20 s, 4 - 100 s; образец № 2, вариант (-Al), $U_m = 160$ V, f = 10 Hz. Участки I, II, III, IV показаны для: a, b, c, $d - U_m = 160$ V, e, $f - T_s = 100$ s.

Целью работы является определение величины P_r и зависимостей M(t), m(t), используя зависимость $\eta_{int}(t)$, получаемую из экспериментальных данных.

Как ранее нами было показано [2,9], в первом полупериоде линейно нарастающего напряжения U(t) на начальном участке I быстрого роста

тока, протекающего через слой люминофора, $I_p(t)$ и яркости L(t) (до точки r, в которой начинается спад скорости нарастания тока $I_p(t)$, см. рисунок) поле в слое люминофора распределяется однородно изза практического отсутствия ударной ионизации дефектов структуры и примесей в слое люминофора [2,9]. На участках II, III, IV зависимостей $I_p(t)$ (см. рисунок) поле в слое люминофора становится неоднородным изза образования объемных зарядов вследствие ударной ионизации прежде всего собственных дефектов слоя люминофора, обусловленных вакансиями серы V_s^+ и цинка V_{2n}^{2-} [8]. При концентрации ионизированных вакансий $N_v(t)$ и значениях M < 2, когда свободный электрон участвует в ионизации в среднем не более одного раза, зависимость $n_p(t)$ имеет вид [8]:

$$n_p(t) = n_{p_0}(t) + N_\nu(t).$$
(5)

Пренебрегая рекомбинацией электронов в сильном электрическом поле из-за того, что время пролета электроном слоя люминофора толщиной $d_p \approx 0.5\,\mu\text{m}$ при дрейфовой скорости $0.75\cdot 10^7\,\text{cm/s}$ [10] составляет $\sim 6.7\cdot 10^{-12}\,\text{s}$, что существенно меньше возможного времени рекомбинации при используемой частоте напряжения возбуждения $10\,\text{Hz} - (3\cdot 10^{-3} - 3.5\cdot 10^{-4})\,\text{s}$ [8], получаем, что в ударном возбуждении центров Mn^{2+} участвуют $n_{po}(t)$ электронов. Тогда выражение для

 $\eta_{int}(t)$ в общем виде с учетом (3)–(5) имеет вид

$$\eta_{int}(t) = \frac{N^*(t)P_r(t)}{n_p(t)} = \frac{N^*(t)P_r(t)}{M(t)n_{p_0}(t)},$$
(6)

где $N^*(t)$ — число возбужденных центров Mn^{2+} . Из (1), (6) следует

$$\frac{N^{*}(t)}{n_{p_{0}}(t)} = d_{pe}(t)\sigma(t)N(x,t).$$
(7)

Условие $N^*(t) = n_{po}(t)$ определяет время t_r , при котором длина прианодной светящейся области слоя люминофора $d_{pe}(t_r)$ равна длине ударного возбуждения центров $\mathrm{Mn}^{2+}l_{\mathrm{Mn}}$ [5]

$$d_{pe}(t_r) = l_{\mathrm{Mn}} = \frac{1}{\sigma(t_r)N(x, t_r)}.$$
(8)

Время t_r соответствует максимальному значению $\eta_{int}(t_r)$, при котором еще отсутствует ударная ионизация дефектов слоя люминофора, т.е. границе участков I и II (см. рисунок), где $M(t_r) = 1$,

$$\eta_{int}(t_r) = P_r(t_r) = P_r = \text{const}, \tag{9}$$

причем P_r не зависит от U_m .

Считая, что при $t > t_r$ на участках II, III из-за относительно слабого изменения среднего поля в слое люминофора $F_p(t)$ [2,9] $N^*(t) \approx n_{po}(t)$, получаем

$$\eta_{int}(t) \approx \frac{P_r}{M(t)} = P_r \left[1 - m(t) \right]. \tag{10}$$

С учетом однородного распределения поля $F_p(t)$ на участке I зависимость $d_{pe}(t)$ на этом участке имеет вид

$$d_{pe}(t) = d_p \left(1 - \frac{F_p(t_t)}{F_p(t)} \right) = d_p \left(1 - \frac{t_t}{t} \right), \tag{11}$$

где t_t — пороговое значение времени нарастания поля, при котором начинается свечение ТП ЭЛИ. Тогда из (8), (11)

$$d_{pe}(t_r) = l_{\mathrm{Mn}} = d_p \left(1 - \frac{t_t}{t_r} \right),\tag{12}$$

где t_t и t_r определяются из экспериментальной зависимости L(t) (см. рисунок, a).

Таким образом, используя экспериментальные зависимости от времени мгновенной яркости L(t), тока $I_p(t)$ и рассчитанную в соответствии с [8] зависимость $\eta_{int}(t)$

$$\eta_{int}(t) = A \frac{L(t)}{I_p(t)},\tag{13}$$

где коэффициент A в приближении монохроматичности излучения и равномерно излучающей в любом направлении поверхности ТП ЭЛИ равен $A = \pi S_e q/k_0 f_{\lambda} h v$, S_e — площадь ТП ЭЛИ (1.77 mm²), q — заряд электрона, k_0 — коэффициент вывода излучения (0.17), f_{λ} — видность излучения (510 lm/W), hv — энергия фотона (2.12 eV), можно определить в точке r значения P_r , $d_{pe}(t_r) = l_{\rm Mn}$ и зависимости M(t) и m(t) на участках II, III.

Экспериментальные исследования выполнялись на образцах ТП ЭЛИ и по методике, аналогичных описанным в [8] при возбуждении ТП ЭЛИ импульсами, состоящими из двух периодов напряжения U(t)треугольной формы частотой 10 Hz, при которой скорость нарастания тока $I_p(t)$ не превышает скорости нарастания яркости L(t) [8], и следующим с периодом запуска $T_s = 0.5$ s, 1 s, 5 s, 20 s, 100 s при изменении амплитуды U_m от 120 до 160 V и с подачей положительного или отрицательного напряжения в первом полупериоде на верхний электрод (варианты +Al и -Al соответственно).

Как следует из рисунка, a, c, при возрастании U_m до 125 V и более на зависимостях L(t), $I_p(t)$ появляются участки II, III, причем величина $\eta_{int}(t)$ (см. рисунок, b) достигает в точке r максимума, который остается практически постоянным при изменении Um от 125 до 160 V и в соответствии с (9) равен P_r . На участках II, III зависимость $\eta_{int}(t)$ спадает в соответствии с (10). При этом для варианта (+Al) значения P_r и $l_{\rm Mn}$ составляют -0.24 и $0.27\,\mu{\rm m}$, для варианта $(-{\rm Al})\sim 0.11$ и $0.26\,\mu{\rm m}$ соответственно, что близко к данным [8], а значения М в зависимостях M(t) (см. рисунок, d) возрастают с увеличением U_m , достигая максимума при $t = t_m$ и $U_m = 160$ V — 1.48 для варианта (-Al) и -1.4 для варианта (+Al), что соответствует результатам [8]. Зависимости m(t)имеют подобный вид с соответствующими максимумами ~ 0.32 (-Al) и ~ 0.29 (+Al). Разница в значениях P_r при этом может быть связана с неравномерным распределением центров Mn²⁺ по толщине слоя люминофора — более высокой концентрацией их у алюминиевого электрода.

Зависимости $\eta_{int}(t)$ и M(t) для различных T_s , приведенные для другого образца ТП ЭЛИ (см. рисунок, e,f) показывают, что для варианта (-Al) зависимость M(t) имеет на участках II, III максимум с последующим спадом, что может быть связано с неравномерным распределением центров Mn^{2+} и дефектов структуры по толщине слоя люминофора, поскольку соответствующая зависимость M(t) для варианта (+Al) имеет вид, аналогичный рисунку, d. При этом максимумы $\eta_{int}(t)$ и M(t) возрастают с увеличением T_s , что объясняется ростом степени нейтрализации объемных зарядов в слое люминофора в паузе между последовательными включениями ТП ЭЛИ и повышением степени однородности распределения поля на участке I [2,8,9].

Предлагаемый метод может быть использован также для определения параметров электролюминесценции других люминофоров с внутрицентровой люминесценцией.

Работа поддержана грантом президента РФ № НШ 1482.2003.8.

Список литературы

- Электролюминесцентные источники света / Под ред. И.К. Верещагина. М.: Энергоатомиздат, 1990. 168 с.
- [2] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2002. Т. 72. В. 22. С. 74–83.
- [3] Гурин Н.Т., Сабитов Ю.В. // ЖТФ. 1999. Т. 69. В. 5. С. 65-73.
- [4] Smith D.H. // J. Luminescence. 1981. V. 23. N 1. P. 209–233.
- [5] Мах Р. // Поликристаллические полупроводники. Физические свойства и применения / Пер. с англ. Под ред. Г. Харбеке. М.: Мир. 1989, С. 264–292.
- [6] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2003. Т. 73. В. 4. С. 100– 112.
- [7] Mach P., Mueller G.O. // Semicond. Sci.Technol. 1991. V. 6. P. 305-323.
- [8] Гурин Н.Т., Рябов Д.В. // ЖТФ. 2005. Т. 75. В. 1. С. 45-54.
- [9] Гурин Н.Т., Сабитов О.Ю., Шляпин А.В. // ЖТФ. 2001. Т. 71. В. 8. С. 48-58.
- [10] Bringuier E. // Phil. Mag. B. 1997. V. 75. № 2. P. 209–228.