05 Структурные и магнитные характеристики однослойных и многослойных пленок Fe/Si, полученных термическим испарением в сверхвысоком вакууме

© С.Н. Варнаков, А.С. Паршин, С.Г. Овчинников, D. Rafaja, L. Kalvoda, А.Д. Балаев, С.В. Комогорцев

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева, Красноярск, Россия Institute of Physical Metallurgy, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, D-09599 Freiberg, Germany Czech Technical University, Zikova 4, 166 36, Prague 6, Czech Republic

Поступило в Редакцию 17 июня 2005 г.

Представлены результаты исследований структурных и магнитных характеристик однослойных и многослойных пленок Fe/Si с нанометровыми слоями, полученных термическим испарением в сверхвысоком вакууме. Исследования проведены методами малоуглового рентгеновского рассеяния, электронной спектроскопии и магнитометрии. Анализ экспериментальных результатов указывает на то, что механизмы формирования интерфейсов на границах раздела Fe/Si и Si/Fe различны.

Все возрастающий интерес в последние годы проявляется к многослойным магнитным структурам в связи с уникальностью их физических свойств и перспективами практического использования [1,2]. Например, эффект гигантского магнитосопротивления, первоначально обнаруженный в металлических сверхрешетках, впоследствии наблюдался и в многослойных структурах [3] с чередующимися металлическими и полупроводниковыми слоями. Получение и исследование многослойных магнитных структур с полупроводниковыми прослойками открывают новые возможности конструирования материалов с уникальными свойствами для практического использования в микро- и наноэлектрони-

1

ке [4]. При получении сверхтонких слоев в многослойных структурах особое требование предъявляется к точности управления их химическим составом, что требует использования сверхвысокого вакуума.

В настоящей работе мы приводим результаты исследований структурных и магнитных характеристик многослойных пленок Fe/Si со слоями нанометровых толщин и тонких пленок составляющих материалов.

Образцы получены методом термического испарения в сверхвысоком вакууме на подложки монокристаллического кремния Si(100) Si(111) при комнатной температуре на модернизированной установке молекулярно-лучевой эпитаксии "Ангара" [5]. Базовый вакуум в технологической камере составлял 10^{-7} Ра. Материалы испарялись из высокотемпературных тиглей нитрида бора, скорость испарения соответствующих материалов варьировалась температурой испарителей и составляла для Fe — 0.16 и для Si — 0.9 nm/min. Контроль температуры испарителей, управление заслонками в процессе формирования многослойной структуры осуществлялись автоматизированным программноаппаратным комплексом [5]. Исследование полученных образцов методами электронной Оже-спектроскопии (ЭОС) и спектроскопии характеристических потерь энергии электронов (СХПЭЭ) проводилось непосредственно в сверхвысоковакуумном технологическом комплексе.

Методом малоуглового рентгеновского рассеяния (МРР) [6] получена информация о структурных параметрах сверхрешетки $[Fe(2 nm)/Si(2 nm)] \times 9/Fe(10 nm)/Si(10 nm)$, таких как толщина отдельного слоя, шероховатость каждой границы раздела. Экспериментальный результат по МРР (пустые символы) и резульмодельных расчетов (сплошная линия) для сверхрешетки тат $[Fe(2 nm)/Si(2 nm)] \times 9/Fe(10 nm)/Si(10 nm)$ представлены на рис. 1. Параметры модельных расчетов кривых MPP, наилучшим образом описывающих экспериментальные кривые для двадцатислойной структуры $[Fe(2 nm)/Si(2 nm)] \times 9/Fe(10 nm)/Si(10 nm)$, приведены в табл. 1 наряду с технологически определяемыми параметрами. Параметры шероховатости границ раздела, оцененные в результате подгонки модельных профилей интенсивности малоуглового рентгеновского рассеяния к измеренным, сопоставимы с толщинами отдельных слоев, причем их абсолютная величина не зависит от толщины слоев железа и кремния и последовательности формирования интерфейса. Полученные результаты характеризуют неоднородность по толщине слоев железа и кремния в исследованных многослойных структурах.

Рис. 1. Экспериментальная и модельная кривая (сплошная линия) малоуглового рентгеновского рассеяния для двадцатислойной структуры $[Fe(2 \text{ nm})/Si(2 \text{ nm})] \times 9/Fe(10 \text{ nm})/Si(10 \text{ nm}).$

Определение магнитных характеристик многослойных систем Fe/Si проводилось на автоматизированном вибрационном магнитометре со сверхпроводящим соленоидом [7].

Температурный ход намагниченности однослойной пленки Fe(15 nm) и сверхрешетки [Fe(5 nm)/Si(2 nm)] × 2/Fe(5 nm)/Si(10 nm), измеренный во внешнем поле H = 1 kOe, приведен на рис. 2. Общий характер зависимости M(T), измеренной в диапазоне температур от 4.2 до 250 К говорит об отсутствии парамагнитного и суперпарамагнитного откликов. Как видно из рис. 2, экспериментальные зависимости M(T) хорошо описываются теоретическим выражением, известным как закон Блоха (см. сплошные линии на рис. 2) [8]:

$$M(T) = M_0(1 - BT^{3/2} - CT^{5/2}).$$
 (1)

Рис. 2. Экспериментальные кривые намагниченности насыщения пленок Fe (15 nm) и [Fe(5 nm)/Si(2 nm) × 2/Fe(5 nm)/Si(10 nm), аппроксимированных выражением (1) (сплошные линии), в координатах ($M, T^{3/2}$). Внешнее поле H = 1 kOe.

Связь коэффициента *В* из соотношения (1) с основными магнитными константами материала: константой обменного взаимодействия *А* и намагниченностью *M*₀ задается формулой

$$A = \frac{k}{8\pi} \left(\frac{M_0}{g\mu_B}\right)^{1/3} \left(\frac{2.612}{B}\right)^{2/3}.$$
 (2)

Рассчитанные из выражений (1) и (2) величины констант B, C, A исследованных пленок приведены в табл. 2, где также представлены хорошо известные величины соответствующих констант для кристалла α -Fe.

Совпадение величины намагниченности однослойной пленки Fe с намагниченностью объемного химически чистого ОЦК Fe указывает на

Таблица 1. Толщины слоев и шероховатости границ раздела, рассчитанные по времени напыления (1 столбец) и по данным малоуглового рентгеновского рассеяния (2 и 3 столбец) для двадцатислойной структуры [Fe(2 nm)/Si(2 nm)] × 9/Fe(10 nm)/Si(10 nm)

Слой	Толщина (технол.), nm	Толщина (расчет.), nm	Шероховатость, пт
Si	10	9.87	2.16
Fe	10	13.71	1.94
Si	2	$1.46^*\pm0.27$	$1.34^*\pm0.16$
Fe	2	$1.51^*\pm0.27$	$1.46^*\pm0.21$
Si	Подложка	—	1.62

* — средние значения для 9 пар слоев.

Таблица 2. Основные магнитные характеристики полученных структур

	<i>M</i> ₀ , G	$B, 10^{-5} \mathrm{K}^{-3/2}$	C , $10^{-8} \mathrm{K}^{-5/2}$	$A, 10^{-6} \text{ erg/cm}$
ОЦК Fe	1740	0.34	0.1	2.1
Однослойная пленка Fe	1750	0.49	0.1	1.7
Многослойная структура Fe/Si	1560	1.38	1.0	0.9

то, что слой Fe здесь является также химически чистым ОЦК Fe. Уменьшение эффективной обменной константы в этой пленке Fe (d = 15 nm), определяемой из закона Блоха $T^{3/2}$ в сравнении с величиной константы обмена объемного ОЦК Fe, не выходит за рамки известного эффекта уменьшения эффективного обмена для тонких пленок, предсказанного в рамках спин-волновой теории [9].

Уменьшение величин M_0 и A, наблюдаемое в пленке $[Fe(5 nm)/Si(2 nm)] \times 2/Fe(5 nm)/Si(10 nm)$, связано со взаимным проникновением атомов Fe и Si соседних слоев мультислойной пленки [10]. Последнее приводит к формированию межслойного интерфейса, состоящего из твердого раствора и силицидов Fe–Si. Причина увеличения константы B (или снижения константы A), а также уменьшения M_0 при уменьшении толщины слоя железа $t_{\rm Fe}$ в этом случае очевидна. Изменения указанных величин в этом случае обусловлены формированием магнитной гетерофазной системы и соответственно являются следстви-

ем увеличения объемной доли межслойного интерфейса с меньшим значением обменной константы и намагниченности. Наблюдаемая величина намагниченности в этом случае описывается выражением

$$M_0 = M_b n_b + M_a n_a = M_b - (M_b - M_a) \cdot \frac{2\Delta}{t_{\rm Fe}},$$
 (3)

где n_a и n_b — доля атомов Fe внутри межслойного интерфейса и доля атомов внутри слоев Fe соответственно, M_b — намагниченность слоя Fe, M_a — намагниченность межслойного интерфейса, Δ — толщина межслойного интерфейса. Это выражение описывает модельное упрощение наблюдаемой ситуации путем замены реального концентрационного профиля, характеризующего межслойный интерфейс переменного состава, концентрационным профилем типа ступеньки [11] (параметры этой ступеньки, состав и Δ характеризуют область постоянного состава). Введение межслойного интерфейса Fe–Si постоянного состава, обладающего магнитными характеристиками M_a и A_a , позволяет провести оценку такого параметра, как Δ — объемной доли или толщины интерфейса.

Анализ фазовой диаграммы системы Fe–Si [12,13] показал, что при комнатной температуре в интерфейсах многослойной системы возможно образование ферромагнитного твердого раствора либо соединений Fe₃Si, FeSi. Для оценки мы приняли $M_a = M$ (Fe₃Si) = 1270 G [12] (немагнитный силицид FeSi мы опустили из рассмотрения, так как его наличие не могло бы привести к наблюдаемому уменьшению величины константы обменного взаимодействия A). С учетом вышесказанного, мы провели оценку толщины химического интерфейса, образованного слабомагнитными соединениями в шестислойной структуре [Fe(5 nm)/Si(2 nm)] × 2/Fe(5 nm)/Si(10 nm). Суммарная толщина химического интерфейса 6 Δ , согласно этой оценке, составила 5.4 nm.

Если предположить что на границах раздела Fe/Si и Si/Fe толщина сплошного слоя одинакова, то толщина химического интерфейса в шестислойной структуре [Fe(5 nm)/Si(2 nm)] $\times 2$ /Fe(5 nm)/Si(10 nm), приходящаяся на одну границу раздела, составляет $\Delta = 0.9$ nm. В этом случае одна граница раздела в однослойной пленке Fe (15 nm) на подслое кремния, согласно формуле (3), должна приводить к уменьшению намагниченности на 30 G. Однако, как видно из табл. 2, такого уменьшения не наблюдается. Это означает, что толщина химического интерфейса на границах Fe/Si и Si/Fe неодинакова. Различие параметров

интерфейса может быть следствием различия механизмов формирования межслойных границ Fe/Si и Si/Fe при получении слоев методом термического испарения.

Дополнительный анализ методом СХПЭЭ двухслойных пленок Fe(10 nm)/Si(1.5 nm) и Si(10 nm)/Fe(1.5 nm), сформированных специально для изучения механизма формирования интерфейса в данных структурах, показал, что когда верхним слоем является железо, спектр двухслойной структуры Si(10 nm)/Fe(1.5 nm) практически не отличается от спектра характеристических потерь энергии электронов однослойной пленки Fe(10 nm). В случае же, когда верхним слоем является Si(1.5 nm), наблюдаются пики потерь, энергетическое положение которых (21.9 eV для первого объемного плазмона) согласуется с литературными данными для силицида железа Fe₃Si [14]. Наши результаты коррелируют с выводами работы [15], в которой сравнивалась электронная структура силицидов железа для пленки Fe на подложке Si и пленки Si на подложке Fe. По данным фотоэмиссионной спектроскопии со спиновым разрешением, было установлено, что механизм формирования интерфейсов Si/Fe и Fe/Si различен. При образовании одного из них формируется металлический интерфейс толщиной $\sim 2\,\mathrm{nm}$, близкий к Fe₃Si. При формировании второго спектр соответствует аморфному объемному Si или аморфным твердым растворам $Fe_x S_{1-x}$ с малым X.

Таким образом, результаты комплексного исследования структурных и магнитных характеристик многослойной системы Fe/Si, полученной в сверхвысоком вакууме на подложках кремния при комнатной температуре, свидетельствуют о существенном влиянии образования химического интерфейса на границах раздела Fe–Si на магнитные характеристики этой системы. Отметим, что возможность различных механизмов формирования интерфейса на границах раздела Fe/Si и Si/Fe необходимо учитывать при интерпретации физических свойств многослойных систем железа и кремния.

Работа выполнена при поддержке программы ОФН РАН "Спинтроника".

Список литературы

[1] Baibich M.N., Broto J.M., Fert A. et al. // Phys. Rev. Lett. 1988. V. 61. P. 2472.

[2] Cambley R.E., Stamps R.L. // J. Phys. Condens. Matter. 1993. V. 5. P. 3727.

- Berkowitz A.E., Mitchell J.R., Carey M.J. et al. // Phys. Rev. Lett. 1992. V. 68.
 P. 3745.
- [4] Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники: Учеб. пособие. Новосибирск: Изд-во НГТУ, 2004. 496 с.
- [5] Варнаков С.Н., Лепешев А.А., Овчинников С.Г., Паршин А.С., Кориунов М.М., Nevoral P. // ПТЭ. 2004. В. 6. С. 252.
- [6] Fullerton E.E., Schuller I.K., Vanderstraeten H., Bruynserade Y. // Phys. Rev. B. 1992. V. 45. P. 9292.
- [7] Балаев А.Д. // Физика магнитных пленок: Сб. науч. тр. Иркутск, 1980. В. 14. С. 171.
- [8] Keffer F. Handbuch der physic B. XXIII/2 Springer-Verlag, 1966. 560 p.
- [9] Mills D.L., Maradudin A.A. // J. Phys. Chem. Solids. 1967. V. 28. P. 1855.
- [10] Strijkers G.J., Kohlhepp J.T., Swagten H.J.M., de Jonge W.J.M. // Phys. Rev. B. 1999. V. 60. P. 9583.
- [11] Исхаков Р.С., Шепета Н.А., Комогорцев С.В., Столяр С.В., Чеканова Л.А., Бондаренко Г.Н., Мальцев В.К., Балаев А.Д. // ФММ. 2003. Т. 95. № 3. С. 37.
- [12] Wijn H.P.J. Magnetic Properties of Metals "d-Elements, Alloys and Compounds". 1991. C. 190.
- [13] Smithells C.J. Metals reference book. London.: Butterworths, 1967. V. 2. 683 p.
- [14] Gallego J.M., Miranda R. // J. Appl. Phys. 1991. V. 69. P. 1377.
- [15] Klasges R., Carbone C., Eberhardt W. et al. // Phys. Rev. B. 1997. V. 56.
 P. 10801.