об О методике структурного анализа тонких островковых пленок

© В.И. Псарев, Л.А. Пархоменко

Запорожский национальный технический университет, Украина E-mail: dilap@zntu.edu.ua

Поступило в Редакцию 12 января 2005 г. В окончательной редакции 3 июня 2005 г.

Получены аналитические формулы для проведения системного анализа структурного огрубления островковых пленок на подложке. Для этой цели предложен метод установления сходства и различия между характеристиками теоретического и экспериментального распределений островков по размерам. Такой способ идентификации распределений позволяет устанавливать корреляционную связь между особенностями трансформации экспериментальных распределений — гистограмм и процессами в островковом пленочном материале.

Рассмотрим вопрос об устойчивости пленок островкового типа к огрублению из-за оствальдовской коагуляции микроостровков, осложненной сопутствующими процессами. Важную информацию об этом можно получить при анализе распределений островков по размерам, испытывающих трансформацию со временем, путем выявления сходства и различия между экспериментальной гистограммой и теоретическим распределением.

Основой для получения теоретических распределений является зависимость скорости роста—растворения (расплывания) микрочастицостровков от их размера, именуемая уравнением размерного движения. Вариант такого уравнения получен [1] как результат усовершенствования формулы Чакраверти [2], которое можно записать в таком обобщенном виде:

$$v(u) = v_k(t) \left(\frac{dr_k}{dt}\right)^{-1} \frac{dr}{dt} = \frac{u-1}{\gamma(u)},\tag{1}$$

где $\frac{dr}{dt}$ — скорость изменения пространственного размера островков радиуса $r = \frac{r_s}{\sin \Theta}$, r_s — эффективный радиус островков в плоскости

70

подложки, Θ — краевой угол; $v_k(t)$ — приведенная скорость изменения критического радиуса островков r_k со временем t; $u = \frac{r}{r_k}$ — безразмерная варианта; $\gamma(u)$ — фактор, определяющий механизм процесса.

Если

$$\gamma(u) = u^s$$
 и $v_k(t) = \frac{dr_k}{dt} \cdot \frac{r_k^s}{A_s}$

где A_s характеризует тип массопереноса при разных значениях s = 1, 2, 3, ..., то получим формулу, объединяющую несколько дискретных механизмов диффузионного массопереноса в дисперсных системах [3]. Заметим, в работе [4] величина *s* обозначена буквой *p* (формула (37)). Учитывая же, что каждой микрочастице дисперсной системы можно приписать свой диффузионный режим, не лишено основания обобщающее предположение об изменении *s* в более широком интервале значений от нуля и до бесконечности (см. также [3]). Информация о влиянии параметра *s* на процесс должна быть полной.

Если

$$\gamma(u) = \varepsilon u^3 + u^{1-\alpha}, \quad v_k(t) = \frac{dr_k}{dt} \cdot \frac{r_k}{aKV} \quad \mathbf{M} \quad \varepsilon = \frac{Kr_k}{D_S},$$

где K — скорость прохождения атомов через межфазовую границу (скорость присоединения адатомов к поверхности островков [1]); D_S — коэффициент поверхностной диффузии адатомов; V — удельный объем вещества пленки; α — параметр структурного распределения островков на подложке, то имеет место смешанный реакционно-диффузионный механизм. При

$$\gamma(u) = u^3 + \varepsilon_1 u^{1-\alpha}, \quad v_k(t) = \frac{dr_k}{dt} \cdot \frac{r_k^2}{aD_s V} \quad \mathbf{u} \quad \varepsilon_1 = \varepsilon^{-1}$$

— смешанный диффузионно-реакционный механизм укрупнения островков пленочного материала.

Выражение, производящее множество теоретических функций распределения при заданном v(u), имеет вид [5]

$$\varphi(u) = \frac{3v_k}{v_k u - v(u)} \exp\left[-3v_k \int \frac{du}{v_k u - v(u)}\right].$$
 (2)

В размерных переменных каждая функция плотности распределения для каждого момента времени *t* может быть получена с помощью формулы

 $f(r,t) = Cr_k^{-4}\varphi(u)$, где C — постоянная величина. Характеристики теоретических кривых распределения существенно зависят от фактора $\gamma(u)$ в уравнении (1). С учетом этого обстоятельства с помощью формул (9)–(11) [1] выведем соответствующие для них выражения.

Верхнюю границу относительных размеров островков $u_g = \frac{r_g}{r_k}$, где r_g — их наибольший радиус (размах распределения), можно определить из уравнения

$$\gamma - \gamma' \cdot u(u-1)\big|_{u_e} = 0. \tag{3}$$

Значение приведенной скорости $v_k = v_k(t)$ вычисляется с помощью формулы

$$v_{k} = (\gamma + \gamma' \cdot u)^{-1} \big|_{u_{g}} = (\gamma' u^{2})^{-1} \big|_{u_{g}}.$$
 (4)

Значения $u_m = \frac{r_m}{r_k}$, где r_m — величина модального радиуса, при которых кривые плотности распределения достигают максимума, можно определить из уравнения

$$4v_k \gamma^2 - \gamma + \gamma'(u-1)\big|_{u_m} = 0.$$
 (5)

Положение точек перегиба на тех же кривых определяется из уравнения

$$20v_k^2\gamma^4 - 13v_k\gamma^2 z + 2z^2 - \left[\gamma\gamma''(u-1) + 2\gamma'z\right](v_ku\gamma - u + 1)\Big|_{u_p} = 0,$$
(6)

где $z = \gamma - \gamma'(u - 1)$. В выражениях (3)–(6) γ' и γ'' — первая и вторая производные по u от $\gamma = \gamma(u)$.

В табл. 1 приведены численные значения характеристик теоретических функций распределения островков по их относительным размерам при разных значениях параметра *s* фактора $\gamma(u) = u^s$. Характерно, не возникает каких-либо противоречий при условии непрерывного изменения величины *s* в интервале от нуля и до бесконечности. Известные виды теоретических распределений можно получить при разных значениях *s*: при *s* = 1 — распределение Вагнера [6]; при *s* = 2 — распределение Лифциша–Слезова [7] и ряд других [8,9]. Все они, в интервале от 0 до ∞ , характеризуются одной точкой перегиба, двумя или полным их отсутствием; единственной точкой перегиба в интервале от u_m до u_g .

Таблица 1. Характеристики функции плотности распределения островков по размерам при разных значениях величины $\gamma(u) = u^s$ в уравнении (1)

S	ug	v_k	u_m	u_{p_1}	u_{p_2}	υ
0	∞	1	0	-	0	∞
0.2	6	0.5824	0.2180	_	0.6745	27.528
0.5	3	0.3849	0.6633	_	1.2055	4.523
0.9	2.111	0.2687	0.9609	0.5143	1.3412	2.197
1	2	0.25	1	0.6084	1.3458	2
2	1.5	0.1481	1.1346	0.9721	1.290	1.322
5	1.2	0.067	1.1187	1.0777	1.1588	1.073
∞	1	0	1	1	1	1

Примечание. Параметр $v = \frac{u_g}{u_m}$ характеризует степень асимметрии кривых плотности распределения; u_{P_1} — точка перегиба на кривой распределения от 0 до u_m и u_{P_2} — в интервале от u_m до u_g ; о других обозначениях см. текст.

При s = 0 ($u_g = \infty$ и $v_k = 1$), подставив уравнение (1) в (2), получим $\varphi(u) = C \exp(-3 \cdot u)$. Описываемая этой функцией дисперсная система островков склонна к диффузионной коагуляции, так как $v_k > 0$. Для больших s (условно $s = \infty$) полидисперсная система островков вырождается в монодисперсную, не склонную к коагуляционному процессу ($v_k = 0$).

Однако все распределения со значением параметра из интервала $I \leq s < \infty$, в том числе и известные, имеют отрицательную асимметрию (коэффициент асимметрии $S_k = \frac{\mu_3}{\sigma^3} < 0$, где μ_3 — центральный момент третьего порядка; σ — стандартная дисперсия).

В табл. 2 приведены численные значения характеристик двупараметрических функций распределения, соответствующие двум механизмам укрупнения островков в дисперсной системе. Случай $\alpha = \varepsilon = 0$ соответствует функции распределения Вагнера [6], а при $\alpha = \varepsilon_1 = 0$ — функции распределения Чакраверти [2].

В той же табл. 2 представлены результаты анализа экспериментальных данных [10] — распределений платиновых островков на γ -Al₂O₃ подложке по их эффективным радиусам. Образцы пленки нагревались при 700°C в атмосфере 2% O₂ + N₂. Нами установлена высокая степень идентичности теоретического и экспериментального распределений, что

α	$\varepsilon; \varepsilon_1$	<i>u</i> _g	v_k	u_m	u_{p_1}	u_{p_2}	υ				
$\gamma(u) = \varepsilon u^3 + u^{1-lpha}; 0 \leqslant lpha \leqslant 1; 0 \leqslant arepsilon \leqslant 1$											
0	0	2	0.25	1	0.6084	1.3458	2				
0.2	0	2.25	0.2904	0.9110	0.3803	1.3298	2.4697				
					0.1239						
0.8	0	6	0.5824	0.2180	—	0.6746	27.528				
0.8	0.05	2.0449	0.3231	0.5752	—	1.3570	3.5552				
0.19	0.01	2.0924	0.2730	0.9421	0.4443	1.3437	2.2210				
					0.1100						
0.362	0.01	2.2649	0.3100	0.8440	—	1.3216	2.6835				
$arphi(u)=u^3+arepsilon_1u^{1-lpha}; 0\leqslant lpha\leqslant 1; 0\leqslant arepsilon\leqslant 1$											
0	0	1.3333	0.1055	1.1417	1.0508	1.2297	1.1679				
0	0.5	1.3865	0.0830	1.1455	1.0314	1.2565	1.2104				
0.2	0.5	1.3890	0.0841	1.1459	1.0307	1.2583	1.2122				
					0.0688						
1	0.5	1.3948	0.0881	1.1480	1.0310	1.2640	1.2149				
1	0.8	1.4254	0.0807	1.1481	1.0167	1.2800	1.2417				

Таблица 2. Характеристики функций плотности распределения микроостровков по размерам при разных значениях величины $\gamma(u)$ в уравнении (1)

позволило определить их параметры (с помощью формулы (15) [1]): после одночасовой выдержки — $\alpha = 0.19$; $\varepsilon = 0.01$; $S_k = -0.276$ и $r_k = 9.32$ nm; после 16 часов — $\alpha = 0.362$; $\varepsilon = 0.01$; $S_k = 0.311$ и $r_k = 11.48$ nm. Изменение знака у коэффициента S_k указывает на значительную трансформацию экспериментальной функции распределения. На аномальное протекание оствальдовской коагуляции островков указывает также характер изменения параметра α и вместе с ним u_g , v_k и v, уменьшение доли растущих островков от 24.91 до 18.69% после 16 часов выдержки.

Предлагаемый в настоящей работе способ идентификации экспериментальных распределений с теоретическими по признаку совпадения их характеристик может служить существенным дополнением к дисперсионному компьютерному анализу, аналогом которого является применяемый для объемных дисперсных систем [11]. Такой метод

позволит получать ценную информацию о влиянии воздействия ряда факторов (легирования, присутствия атмосферы, переогранки растущих островков и др.) на процесс огрубления пленочного островкового материала.

Список литературы

- [1] Псарев В.И. // Металлы. 1999. № 6. С. 105–110.
- [2] Chakraverty B.K. // J. Phys. Chem. Solids. 1967. V. 28. P. 2401-2412.
- [3] Псарев В.И. // Металлы. 2003. № 5. С. 87–93.
- [4] Кукушкин С.А., Осипов А.В. // ЖЭТФ. 1998. Т. 113. № 6. С. 2193–2208.
- [5] Псарев В.И. // Изв. вузов. Физика. 1990. № 12. С. 53-58.
- [6] Wagner C. // Zschr. f. Electrochemie. 1961. Bd 65. N 7/8. S. 581–592.
- [7] Лифшиц И.М., Слезов В.В. // ЖЭТФ. 1958. Т. 35. № 2/8. С. 479–492.
- [8] Vengrenovith R.D. // Acta Metal. 1982. V. 30. N 6. P. 1079–1086.
- [9] Кондратьев В.В., Устюгов Ю.М. // ФММ. 1993. Т. 76. № 5. С. 40–50.
- [10] Wynblatt P., Gjostein N.A. // Scripta Metallurgica. 1973. V. 7. P. 969-976.
- [11] Псарев В.И. // Изв. вузов. Цветная металлургия. 2001. № 3. С. 28–32.