Влияние обработки в плазме (O₂,H₂) на структуру и физические свойства пленок SnO_x

© Н.Б. Бейсенханов

12,13,09

Физико-технический институт Министерства образования и науки Республики Казахстан, Алма-Ата, Казахстан

E-mail: beisen@sci.kz, beisen@mail.ru

(Поступила в Редакцию 18 мая 2010 г.)

Рассмотрено влияние обработки водородной и кислородной плазмой тлеющего разряда на структурные и оптические свойства пленок SnO_x толщиной 270-350 nm, полученных магнетронным распылением и золь-гель-методом на стеклянной подложке. Показано сегрегирующее и разрушающее воздействие плазмы на структуру кристаллитов и прозрачность пленок, а также на их пористость. Выявлена принципиальная возможность получения посредством обработки в водородной плазме тлеющего разряда кристаллоаморфных наноструктур, в которых качественные нанокристаллы оксидов олова чередуются с кластерами оксидов олова.

Работа поддержана Комитетом науки Министерства образования и науки Республики Казахстан: "Исследование физических процессов формирования нанообъектов и наноструктур на поверхности и границах раздела различных материалов для создания приборных структур широкого диапазона применений" (ГР 0109РК00887, шифр Ф0500, 2009–2011 гг.).

1. Введение

Разнообразие специфических и уникальных свойств SnO₂ способствует его широкому практическому применению. Наноструктурированные пленки SnO₂ могут быть использованы в качестве чувствительного элемента при создании газовых сенсоров или прозрачных электронов для оптоэлектронных устройств [1].

Метод получения пленок SnO_x оказывает существенное влияние на их характеристики. К существенным различиям пленок, полученных методом магнетронного распыления и золь-гель-методом, можно отнести состав синтезированной пленки и его стехиометрию, оказывающие влияние на свойства пленок как после осаждения, так и после обработки.

Среди различных методов повышения чувствительности металлооксидных слоев особый интерес представляют обработка в плазме различных газов (в основном Оили Н-плазма)[2–5]. Анализ изменения оптических параметров и структурных характеристик после обработки плазмой может способствовать лучшему пониманию динамики изменения физических и структурных свойств тонких пленок диоксида олова.

В настоящей работе представлены результаты исследования влияния обработки водородной и кислородной плазмой тлеющего разряда на структурные и оптические свойства пленок SiO₂, полученных магнетронным распылением и золь-гель-методом.

2. Эксперимент

Пленки SnO_x толщиной ~ 300 nm осаждены на микроскопные стеклянные слайды методом реактивного магнетронного распыления. Параметры осаждения: напряжение на катоде — 470 V, ток разряда — 35 mA, давление смеси Ar–O₂ внутри камеры — 1-2.7 Pa, концентрация кислорода ~ 10%, скорость осаждения пленок ~ 0.05 nm/s, температура подложки 200°C.

Раствор необходимой концентрации для изготовления пленок SnO₂ толщиной ~ 300 nm золь-гель-методом (методом центрифугирования) был получен растворением безводного SnCl₄ в 97% этаноле. Кинематическая вязкость раствора составила ~ 1.9 mm²/s. Раствор наносился на стеклянную подложку, расположенную на специально разработанном столике ротора центрифуги. Скорость вращения центрифуги ~ 3000 min⁻¹. Время центрофугирования составило 3–5 s. Подложки с нанесенной пленкой высушивались с помощью инфракрасного излучателя при температуре 80°C в течение 3–5 min. Затем образцы помещались в муфельную печь и высушивались при температуре 400°C в течение 15 min. Для получения пленок необходимой толщины после сушки наносили дополнительные слои.

Структура осажденных пленок изучалась методом рентгеновской дифракции с использованием узкоколлимированного $(0.05 \cdot 1.5) \text{ mm}^2$ монохроматического Си K_{α} -пучка рентгеновских лучей, направленного под углом 5° к поверхности образца. Средний размер кристаллитов в различных плоскостях определен по методу Джонса [6,7] из полуширины рентгеновских линий. Погрешность в зависимости от величины уширения рентгеновской линии находилась в пределах 3–7%. Исследование топографии пленок проводилось на атомносиловом микроскопе JSPM-5200, JEOL (Япония) полуконтактным методом.

Оптические параметры пленок оценивались из спектров пропускания, измеренных на двулучевых спектрофотометрах СФ-256 УВИ (190–1200 nm) и СФ-256 (1100–2500 nm) (ЛОМО, Россия).

Обработка кислородной и водородной плазмой мощностью ~ 20 W и частотой колебаний 27.12 MHz \pm 0.6% проводилась при давлении 6.5 Pa, температуре образцов $\sim 100^\circ C$ в течение 5, 10, 15 и 20 min. Отжиг образцов проводился на воздухе при температуре 550°C в течение 1 h.

3. Результаты

Оптические спектры пропускания пленок SnO_x показаны на рис. 1. В табл. 1 представлены оптические параметры пленок, вычисленных стандартными способами [8,9]. Пленки, синтезированные золь-гель-методом, имеют большую пористость, что способствует их более высокой газочувствительности [10].

Для пленок SnO_x, полученных магнетронным распылением (рис. 1, кривая 2), обработка H- или О-плазмой слабо влияет на их спектры пропускания в интервале длин волн 300–1200 nm (рис. 1, кривая 3 и 4). Для пленок, полученных золь-гель-методом (рис. 1, кривая 5), обработка О-плазмой приводит к уменьшению пропускания $T(\lambda)$ в пределах 1–5% (рис. 1, кривая 6), что, вероятно, связано с их более высокой пористостью. Обработка H-плазмой этих пленок привела к заметному уменьшению пропускания на 3–15% (рис. 1, кривая 7), что связано с нарушением структуры и образованием непрозрачных соединений SnO в соответствии с выражением (1)

$$SnO_2 \xrightarrow[-H_2O]{+H_2} SnO \xrightarrow[-H_2O]{+H_2} Sn.$$
(1)

В области 1200–2500 nm наблюдается значительное падение $T(\lambda)$ после обработки в течение 5 min O-плазмой или H-плазмой пленок SnO_x, синтезированных магнетронным распылением при давлении смеси Ar–O₂ в камере 2.7 Pa (рис. 1, кривые 3 и 4). Уменьшение пропускания этих пленок, состоящих преимущественно из кристаллитов SnO₂ (рис. 2, *a*), может происходить в

Таблица 1. Параметры пленок SnO_x, полученных магнетронным распылением при давлении смеси Ar–O₂ внутри камеры 2.7 Ра и золь-гель-методом

Метод получения образца	n	D	E_g	k	V	ρ
Магнетронное						
распыление	1.830	280	4.05	$1.65\cdot 10^3$	15.5	4.89
О-плазма	1.750	276	4.05	$1.68\cdot 10^3$	21.0	5.45
Н-плазма	1.805	294	4.05	$2.25\cdot 10^3$	17.0	5.75
Золь-гель-метод	1.741	316	4.10	$2.50\cdot 10^3$	22.3	5.40
О-плазма	1.816	297	4.10	$3.05\cdot 10^3$	16.5	5.80
Н-плазма	1.734	288	4.00	$5.91 \cdot 10^3$	22.8	5.36

Примечание. n — показатель преломления, D — толщина пленки (nm), E_g — ширина запрещенной зоны (eV), k — коэффициент поглощения (1/cm), V — пористость (%), ρ — плотность (g/cm³).

Рис. 1. Оптические спектры пропускания подложки из стекла (I) и тонких пленок SnO_x на такой подложке после осаждения магнетронным распылением (давление смеси Ar–O₂) 2.7 Ра (2) с последующей обработкой кислородной (3) или водородной (4) плазмой либо после осаждения золь-гель методом (5) с последующей обработкой кислородной (6) или водородной (7) плазмой.

результате увеличения концентрации свободных носителей заряда из-за сегрегации избыточных атомов олова и формирования субнанометрических кластеров Sn.

Ранее [6] нами уже сообщалось об аномальном увеличении абсорбции в инфракрасной области 1500–2500 nm для пленок SnO₂, полученных при давлении смеси Ar–O₂ в камере 2.7 Ра, после отжига при температуре 200°С. Это объяснялось формированием частиц Sn. Отсутствие линий поликристаллической фазы Sn на дебаеграммах после осаждения (рис. 2, *a*) и обработки в О-плазме (рис. 2, *b*, *c*) может быть обусловлено малыми размерами частиц олова, не образующих кристаллиты.

Однако увеличение концентрации избыточного олова в пленке, полученной в условиях недостатка кислорода при пониженном давлении смеси Ar–O₂ в камере ~ 1 Ра, приводит после обработки водородной плазмой к формированию кристаллитов олова (β -Sn) со средним размером ~ 30 nm (рис. 3, *a*), демонстрируя сегрегирующее воздействие водородной плазмы.

Оптические спектры пропускания (рис. 4, кривая 2) свидетельствуют о том, что увеличение концентрации избыточного олова в пленке привело к значительному ухудшению прозрачности по сравнению с кривыми 2 на рис. 1. Присутствие значительного количества кластеров олова, вероятно, является причиной низкой прозрачности пленок в области малых длин волн ($\sim 350-600$ nm) и выше сразу после осаждения, когда еще не наблюдаются кристаллиты β -Sn на рентгенограммах.

Обработка в водородной плазме способствовала частичному превращению кластеров олова в кристаллиты олова (рис. 3, *a*) и заметному уменьшению коэффициентов пропускания $T(\lambda)$ (рис. 4, кривая 3) во всем диапазоне рассматриваемых длин волн (500–1100 nm).

Рис. 2. Дебаеграммы и кривые интенсивности для тонкой пленки SnO₂ после осаждения магнетронным распылением (давление смеси Ar–O₂ 2.7 Pa) на подложку из стекла (a), обработки кислородной плазмой тлеющего разряда в течение 5 (b), 20 min (c) и отжига при 550°C в течение 1 h (d).

Рис. 3. Дебаеграммы и кривые интенсивности для пленок SnO₂ после осаждения магнетронным распылением (давление смеси Ar–O₂ 1 Pa) и обработки Н-плазмой (a), осаждения и отжига при 550°C в течение 1 h (b), последующей обработки Н-плазмой (c) и повторного отжига при 550°C (d).

Распад и окисление кристаллитов олова при последующем отжиге на воздухе при температуре 550° С в течение 1 h (рис. 3, b) приводит к существенному просветлению пленки (рис. 4, кривая 4) как в области > 600 nm, так и в области малых длин волн ~ 350-600 nm ($T(\lambda)$ от 0 до ~ 80%), для которой пленка была практически непрозрачной. Это может быть

вызвано окислением не только кристаллитов β -Sn, но и кластеров из атомов олова. При этом прозрачность этих пленок оказывается выше, чем прозрачность необработанных в H-плазме пленок после отжига при тех же условиях (рис. 4, кривая 5). Это может быть обусловлено более интенсивными процессами окисления обработанных в плазме пленок в процессе отжига ввиду

Таблица 2. Оптические параметры пленки SnO_x, полученной магнетронным распылением при давлении смеси Ar–O₂ внутри камеры 1 Ра

Последовательность операций	п	D	E_g	ρ	V
Отжиг Плазма–отжиг	1.94 1.88	330 341	4.00 4.01	6.42 6.13	7.70 11.8
Отжиг–плазма–отжиг	1.82	296	4.05		5.82

их повышенной пористости (11.8 вместо 7.7 согласно табл. 2).

После отжига на воздузе при 550°C в течение 1 h этих пленок, как обработанных, так и не обработанных в Н-плазме, наблюдается появление рентгеновских линий SnO₂ (6 линий), Sn₂O₃ (5) и SnO (1) (рис. 3, b). Размеры кристаллитов лежат в пределах 8-18 nm. Обработка отожженных образцов водородной плазмой привела к размытию участков линий в интерале углов $15 < \theta < 20^{\circ}$ (в области между стрелками 1 на рис. 3, с и 5), соответствующих отражению от систем плоскостей SnO(101), SnO₂(101) и (200), Sn₂O₂(021) и $(0\bar{3}0)$. Так как рентгеновская линия на дебаеграмме представляет собой совокупность зеркальных отражений от множества кристаллитов, находящихся в отражающем положении в соответствии с уравнением Брэгга $2d\sin\theta = \lambda$, то размытие участков линий может произойти при селективном, или выборочном разрушении (аморфизации и кластеризации) только тех кристаллитов, которые ориентированы на отражение в область размытия (между стрелками 1).

Рис. 4. Оптические спектры пропускания тонких пленок SnO_x , полученных магнетронным распылением (давление смеси $\text{Ar}-\text{O}_2$ 1 Pa). 1 — подложка (стекло), 2 — пленка SnO_x на стекле, 3 — обработка в H-плазме пленки SnO_x , 4 — отжиг при 550°C (1 h) обработанной в H-плазме пленки SnO_x , 5 — отжиг при 550°C необработанной в H-плазме пленки SnO_x , 6 — отжиг при 550°C + H-плазма пленки SnO_x , 7 — отжиг при 550°C + H-плазма + отжиг при 550°C пленки SnO_x .

Рис. 5. Иллюстрация размытия участков рентгеновских линий (на примере $\text{SnO}_2(101)$ и SnO(101)) в интервале углов $15 < \theta < 20^\circ$ и $15 < \alpha < 45^\circ$ (в области между стрелками *I*) после обработки отожженных образцов Н-плазмой. Траектории рентгеновского луча: X_1X_2 — луч, падающий под углом $\psi = 5^\circ$ к поверхности образца, X_2X_3 — направление проходящего луча, X_2X_4 — луч, отраженный от системы плоскостей $\text{SnO}_2(101)$ кристаллита *B* (plane *B*), X_2X_5 — луч, отраженный от системы плоскостей $\text{SnO}_2(101)$ кристаллита *A* до его разрушения обработкой в плазме (plane *A*). O_1O_2 — прямая, лежащая в плоскости *A* и образующая угол θ с X_2X_3 и X_2X_4 .

Это предполагает такую ориентацию пленки SnO_x по отношению к движению частиц плазмы, что нарушается симметрия и порядок расположения атомов кристаллитов в системах плоскостей SnO(101), SnO₂(101) и (200), Sn₂O₃($\overline{021}$) и ($\overline{030}$) (плоскость *A* на рис. 5). Произведены оценки углов α между проекциями на плоскость, перпендикулярную к падающему рентгеновскому пучку, нормалей к поверхности образца и к плоскостям *A* кристаллитов, находившихся в отражающем положении до кластеризавии обработкой в водородной плазме. Угол α для системы плоскостей SnO(101), SnO₂(101) и (200), Sn₂O₃($\overline{021}$) и ($\overline{030}$) лежит в пределах 15–45°, а угол θ — в пределах 15–20°.

В других направлениях участки рентгеновских линий не подвергались размытию (в области между стрелками 2 на рис. 3, с и 5), кристаллиты оказались цельными и даже увеличили свои размеры, демонстрируя сегрегирующие эффекты воздействия водородной плазмы. При этом порядок расположения атомов в системах плоскостей SnO(101), SnO₂(101) и (200), Sn₂O₃(021) и (130) в этих кристаллитах (плоскость *B* на рис. 5) оказывается ненарушенным. Угол α для этих плоскостей лежит в пределах 15–(-45)°, а угол θ — в тех же пределах 15–20°. Таким образом, показана принципиальная возможность

Рис. 6. Топография поверхности (500 × 500 nm) пленок SnO₂, синтезированных с помощью магнетронного распыления (*a*), с последующей обработкой Н-плазмой (*b*) или О-плазмой (*c*) и пленок SnO₂, осажденных золь-гель методом (*d*), с последующей обработкой Н-плазмой (*e*) или О-плазмой (*f*). Время обработки 5 min.

получения посредством обработки в водородной плазме тлеющего разряда кристаллоаморфных наноструктур, в которых качественные нанокристаллы оксидов олова чередуются с наноразмерными кластерами оксидов олова.

Как видно из рис. 4 (кривая 6), обработка Н-плазмой отожженных поликристаллических пленок, полученных

магнетронным распылением в условиях недостатка кислорода при давлении смеси Ar–O₂ в камере ~ 1 Ра, приводит к заметному ухудшению коэффициентов пропускания в интервале длин волн 300–1100 nm. В то время как обработка H- или О-плазмой пленок SnO_x, полученных при давлении смеси Ar–O₂ 2.7 Ра, слабо

влияет на их спектры пропускания в интервале длин волн 300-1200 nm (рис. 1, кривые 3 или 4). Различие может быть обусловлено фазовым составом. Поведение кривой 6 может быть вызвано присутствием в пленке не только кристаллитов SnO₂, но и кристаллитов Sn₂O₃ и SnO (рис. 3, *b*, *c*), которые под действием плазмы могут согласно формуле (1) трансформироваться в кластеры с избыточным содержанием атомов Sn, вызывая существенное снижение прозрачности.

Повторный отжиг в течение 1 h при температуре 550°С (рис. 4, кривая 7) вызывает увеличение прозрачности практически во всем исследованном диапазоне длин волн и восстановление целостности рентгеновских линий SnO(101), $SnO_2(101)$ и (200), $Sn_2O_3(021)$ и (130) (рис. 3, *d*).

В случае обработок кислородной плазмой в течение 5 min (рис. 2, *b*) и 20 min (рис. 2, *c*) интенсивность линий SnO₂ значительно снижается. Это может произойти при разрушении под действием кислородной плазмы кристаллитов оксида олова с формированием кластерной структуры пленки. Кластеризация не сопровождается заметным распылением пленки, так как после отжига при 550°C в течение 1 h структура кристаллитов SnO₂ восстанавливается и на дебаеграммах интенсивность рентгеновских линий увеличивается (рис. 2, *d*). Толщина пленки после обработки кислородной плазмой уменьшается незначительно (табл. 1).

Необходимо отметить, что эффект уменьшения прорачности от присутствия наночастиц в пленках, синтезированных магнетронным распылением, оказывается более выраженным в случае обработки водородной плазмой по сравнению с кислородной плазмой (рис. 1, кривые 3 и 4). Действительно, при обработке кислородной плазмой помимо сегрегации наночастиц олова одновременно идет окисление части из них до SnO₂, т.е. концентрация и размеры наночастиц олова должны быть меньше, и, следовательно, прозрачность должна быть выше. Таким образом, процессы кластеризации и доокисления пленок протекают одновременно.

Как было обнаружено, увеличение времени обработки О-плазмой от 10 до 20 min ведет к увеличению $T(\lambda)$ в ближней инфракрасной области и спектр пропускания практически идентичен спектру необработанной пленки вследствие окисления нанокластеров избыточного олова. При обработке Н-плазмой (20 min) увеличение $T(\lambda)$ также имеет место, но намного меньше, что связано с менее интенсивными процессами окисления. Таким образом, установлен следующий важный технологический эффект: позитивное, недостижимое термическими и другими обработками воздействие 10–20 min обработки кислородной плазмой на структуру и прозрачность пленок, полученных магнетронным распылением, заключается в их кластеризации и доокислении в едином процессе.

Для пленок, полученных золь-гель-методом, обработка в плазмах в течение 5 min практически не приводит к уменьшению прозрачности в ближней инфракрасной На рис. 6 представлены топографии поверхности (500 × 500 nm) пленок SnO₂ как до, так и после обработки в плазме. Яркую светлую окраску имеют выступающие над поверхностю участки, а темную окраску — участки ниже поверхности,с которых начинается отсчет высоты. Пленка, осежденная магнетронным распылением (рис. 6, *a*), является крупнозернистой, состоящей из агломератов размером ~ 60–120 nm. Разность между высшей и низшей точками поверхности R_z составила 41 nm, а средняя шероховатость 3.58 nm. Поскольку размеры агломератов намного превосходят размеры кристаллитов SnO₂ (4–10 nm), определенные из рентгеновских данных, можно заключить, что агломераты состояит из кристаллитов оксида олова.

Обработка в Н-плазме приводит к некоторому уменьшению размеров зерен (рис. 6, *b*), тогда как обработка в О-плазме приводит к разрушению зернистой структуры пленки (рис. 6, *c*, *e*), подтверждая предположение о кластерной структуре пленки после обработки. Пленка, осажденная золь-гель-методом (рис. 6, *d*), является более мелкозернистой. Разность между высшей и низшей точками поверхности R_z составила 8.0 nm, а средняя шероховатость 0.66 nm. Обработка в Н-плазме (рис. 6, *e*) приводит к формированию агломератов размером до 200 nm.

4. Заключение

Показано, что обработка Н- или О-плазмой тлеющего разряда в течение 5 min пленок SnO_x , полученных магнетронным распылением при давлении смеси Ar-O2 в камере 2.7 Ра, слабо влияет на спектры пропускания в интервале длин волн 300-1200 nm. В области $1200-2500 \,\mathrm{nm}$ наблюдается значительное падение $T(\lambda)$ в результате увеличения концентрации свободных носителей заряда из-за сегрегации субнанометрических кластеров Sn. Значительное ухудшение прозрачности в области ~ 350-600 nm и выше при уменьшении давления смеси Ar-O2 до 1 Ра обусловлено увеличением количества кластеров олова в пленке, трансформирующихся при обработке Н-плазмой в кристаллиты олова $(\beta$ -Sn) со средним размером ~ 30 nm. Прозрачность этих пленок после отжига при 550°C в течение 1 h оказывается выше, чем прозрачность необработанных в Н-плазме пленок после отжига, что обусловлено более интенсивным формированием кристаллитов SnO₂, Sn₂O₃ и SnO (8-18 nm) в этих пленках ввиду их повышенной пористости. Обработка Н-плазмой отожженных поликристаллических пленок приводит к заметному снижению прозрачности, что обусловлено трансформацией

кристаллитов Sn₂O₃ и SnO в кластеры с избыточным содержанием атомов Sn. Обработка Н-плазмой привела к селективной аморфизации кристаллитов, ориентированных по отношению к движению частиц плазмы таким образом, что нарушилась симметрия и порядок расположения атомов в плоскостях SnO(101), $SnO_2(101)$ и (200), Sn₂O₃($\overline{021}$) и ($\overline{030}$). При этом углы Брэгга θ для этих плоскостей лежат в пределах $15-20^{\circ}$, а углы α между проекциями (на перпендикулярную падающему рентгеновскому пучку плоскость) нормалей к ним и к поверхности образца лежат в пределах 15-45°. Таким образом, показана принципиальная возможность получения посредством обработки в Н-плазме тлеющего разряда кристаллоаморфных наноструктур, в которых качественные нанокристаллы оксидов олова чередуются с кластерами оксидов олова. После повторного отжига при 550°C в течение 1h получены пленки с более высокой прозрачностью.

Обработка О-плазмой пленок, полученных золь-гельметодом, приводит к незначительному уменьшению пропускания в пределах 1-5% в интервале длин волн 300-1200 nm, что связано с их более высокой пористостью и нарушениями структуры, а обработка Н-плазмой привела к заметному снижению прозрачности на 3-15%в связи с образованием SnO. Не обнаружено снижения прозрачности в ближней инфракрасной области ввиду однородности состава пленок SnO₂.

Автор выражает глубокую благодарность Д.М. Мухамедшиной, И.В. Валитовой, К.А. Мить и Е.А. Дмитриевой за содействие в проведении экспериментов, а также Комитету науки МОН Республики Казахстан за финансирование исследований.

Список литературы

- A.S. Bakin, M.V. Bastaev, D.Tz. Dimitrov, V.A. Moshnikov, Yu.M. Tairov. Thin Solid Films 296, 168 (1997).
- [2] R. Srivastava, R. Dwivedi, S.K. Srivastava. Physics of semiconductor devices. Narosa Publishing House, New Delhi, India (1998). 526 p.
- [3] J.C. Jiang, K. Lian, E.I. Meletis. Thin Solid Films **411**, 203 (2002).
- [4] R. Srivastava, R. Dwivedi, S.K. Srivastava. Microelectron. J. 29, 833 (1998).
- [5] T. Minami, H. Sato, H. Nanto, S. Takata. Thin Solid Films 176, 277 (1989).
- [6] D.M. Mukhamedshina, N.B. Beisenkhanov, K.A. Mit', I.V. Valitova, V.A. Botvin. Thin Solid Films 495, 316 (2006).
- [7] B.N. Mukashev, S.Zh. Tokmoldin, N.B. Beisenkhanov, S.M. Kikkarin, I.V. Valitova, V.B. Glazman, A.B. Aimagambetov, E.A. Dmitrieva, B.M. Veremenithev. Mater. Sci. Eng. B **118**, *1–3*, 164 (2005).
- [8] Seok-Kyun Song. Phys. Rev. B 60, 11138 (1999).
- [9] I.A. Karapatnitski, K.A. Mit', D.M. Mukhamedshina, N.B. Beisenkhanov. Surf. Coat. Technol. 151–152, 76 (2002).
- [10] D.M. Mukhamedshina, K.A. Mit', N.B. Beisenkhanov, E.A. Dmitriyeva, I.V. Valitova. J. Mater. Sci.: Mater. Electron. 19, 382 (2008).