12,13,04 Особенности влияния легирующих добавок на фазообразование YBO₃ и ScBO₃ при синтезе из аморфного прекурсорного состояния

© И.М. Шмытько, И.Н. Кирякин, Г.К. Струкова

Институт физики твердого тела РАН, Черноголовка, Московская обл., Россия E-mail: shim@issp.ac.ru

(Поступила в Редакцию 7 июня 2010 г.)

Рентгеновскими дифракционными методами исследовано влияние легирующих добовок на структурные состояния боратов YBO₃ и ScBO₃ при последовательных изотемпературных отжигах аморфного прекурсорного состояния и шихты из смеси микропорошков исходных оксидов редкоземельных металлов (P3M) того же состава. Показано, что полученные в обоих случаях фазовые последовательности боратов P3M существенно отличаются друг от друга. Приводится анализ возможных причин сильного влияния легирующих добавок на структурные последовательности при синтезе YBO₃ и ScBO₃ из аморфного прекурсорного состояния.

Работа выполнена по программе РАН "Структура конденсированных сред" и проекта РФФИ.

1. Введение

В настоящее время пристальное внимание уделяется всестороннему изучению наноскопических систем [1,2]. Причина такого внимания к наночастицам обусловлена их необычными свойствами и структурой, не описываемыми в рамках уже развитых закономерностей, и возможностью получения на их основе материалов и приборов с уникальными физическими характеристиками. В последнее время значительное внимание уделяется сложным оксидным соединениям ввиду их прикладного значения. Так, перовскиты, гранаты, молибдаты и бораты редкоземельных элементов обладют эффективными сцинтилляционными свойствами при легировании их атомами других редкоземельных элементов. При этом оказалось, что в ряде случаев керамики из наногранул сложных оксидов обладют параметрами, значительно превосходящими уровень монокристаллических сцинтилляторов [3,4]. Кроме того, оказалось, что иногда структурные состояния сложных оксидов редкоземельных металлов (РЗМ), полученные при твердофазном синтезе из аморфного прекурсорного состояния, отличаются от известных фазовых последовательностей, полученых для микрокристаллического состояния. В частности, при синтезе сложных оксидов и фторидов РЗМ из аморфного прекурсорного состояния были открыты циклические перестройки структуры при увеличении размера нанозерен [5], обнаружено необычное двухфазное состояние внутри отдельных нанозерен, образованных на первых этапах кристаллизации [6,7], открыто инициирующее действие непрерывного нагрева на твердофазный синтез сложных оксидов [8,9]. Учитывая такое многообразие структурных аномалий при твердофазном синтезе сложных оксидов и фторидов РЗМ из аморфного прекурсорного состояния, а также главную роль в эффективности сцинтилляционных свойств этих соединений легирующих атомов, возникает естественная необходимость в изучении влияния легирующих добавок на структурные состояния этих соединений при синтезе из аморфного прекурсорного состояния.

В настоящей работе в качестве объектов исследования были выбраны бораты YBO3 и ScBO3 как наиболее простые. Известно, что в микроскопическом состоянии бораты иттрия имеют только структуру фатерита $(P6_3/mmc, a = 3.778 \text{ Å}, c = 8.814 \text{ Å}), a$ борат скандия имеет только структуру кальцита (R(-3)c, a = 4.748 Å, c = 15.262 Å). При этом нами было установлено, что при твердофазном синтезе бората иттрия в режиме непрерывного нагрева аморфного прекурсорного состояния на начальных этапах кристаллизации дополнительно к фазе фатерита образуется фаза кальцита, а при синтезе бората скандия дополнительно к равновесной фазе кальцита образуются фаза фатерита и Х-фаза [9]. Это обстоятельство дало нам основание предположить, что малые добавки Sc в прекурсор YBO3 при последовательных изотемпературных отжигах могут привести к образованию фазы кальцита, а добавки атомов У в аморфный прекурсор при синтезе ScBO3 могут привести к образованию фазы фатерита, неизвестных в этих соединениях в микрокристаллическом состоянии.

2. Объекты и метод исследования

Получение аморфного прекурсорного состояния YBO₃ и ScBO₃ проводилось методом термолиза растворителя [10–15]. Метод термолиза растворителя основан на возможности растворения в азотной кислоте простых оксидов многих редкоземельных металлов. Нагрев такого раствора до $600-700^{\circ}$ С приводит к быстрому разложению растворителя и получению порошкообразного образца, получившего название прекурсора, характеризуемого в дифракционном эксперименте широкими галообразными рефлексами, характерными для аморфного состояния [16–18]. В качестве исходных оксидов РЗМ использовались микропорошки Y_2O_3 и Sc₂O₃.

В качестве борсодержащего соединения использовались микропорошки бората водорода H₃BO₃. При этом в раствор закладывалось 10% превышение атомов бора по отношению к редкоземельным атомам. Превышение атомов бора по отношению к атомам РЗМ было обусловлено тем, что в процессе высокотемпературных отжигов аморфных прекурсоров происходит частичное удаление бора в атмосферу, в то же время такой избыток бора не влияет на фазовые диаграммы получаемых боратов РЗМ [19]. Таким методом были получены аморфные прекурсоры чистых боратов YBO3 и ScBO3 и легированных в соотношении Y_{0.95}Sc_{0.05}BO₃ и Sc_{0.95}Y_{0.05}BO₃. Выбор 5% концентрации легирующих атомов был обусловлен нижним концентрационным пределом регистрации возможных самостоятельных фаз методами рентгеновской дифрактометрии, а также тем, что наиболее эффективные сцинтилляционные свойства боратов РЗМ получаются при легировании именно в области пяти атомарных процентов.

Твердофазный синтез перечисленных соединений осуществлялся путем отжига аморфных прекурсоров при повышенных температурах в лабораторной печи SNOL-6.7/1300 и характеризовался последовательными изотермическими отжигами в течение 1-4h при температурах от 400 до 1250°С с минимальным шагом, равным 50°С. После очередного отжига образец извлекался из печи для быстрого охлаждения на воздухе и определения его структурного состояния. Структурное состояние образцов регистрировалось на рентгеновском дифрактометре D500 (Siemens). Использовалось монохроматизированное СиКа-излучение. Если после очередного отжига наблюдалось заметное изменение дифракционных спектров, температурный шаг последующего отжига уменьшался до нескольких десятков градусов или проводился повторный отжиг при той же температуре.

3. Экспериментальные результаты

Для удобства изложения приведем рентгеноструктурные данные отдельно для каждого редкоземельного бората, полученного из аморфного прекурсорного состояния без добавок и с легирующими добавками. Полученные результаты сравним с фазовыми последовательностями для традиционного твердофазного синтеза из гомогенизированной смеси микропорошков с добавками оксидов, приводящим к тем же процентным содержаниям легирующих атомов, что закладывались и при получении аморфных прекурсоров.

3.1. YBO₃

При синтезе чистого бората иттрия из аморфного прекурсорного состояния без легирования никаких новых фазовых состояний кроме фатеритной модификации YBO₃ зарегистрировано не было. Однако структурное

Рис. 1. Дифрактограммы структурных состояний YBO₃, полученные при последовательных отжигах аморфного прекурсорного состояния без легирующих добавок. a прекурсор, T_{room} ; b — 400°C (30 min); c — 400°C (30 min) + 450°C (30 min) + 500°C (30 min); d — 400°C (30 min) + 600°C (30 min) + 650°C (30 min); d — дополнительно к c отжиг при 700°C (30 min). (hkl) — индексы отражений от восстановленной фазы Y₂O₃; $(hkl)_v$ — индексы отражений от фазы фатерита.

поведение образца без легирования сильно отличалось от структурного поведения легированного образца. В частности, при отжиге аморфного прекурсора при 400°С наблюдалось восстановление кристаллической структуры оксида скандия Y_2O_3 , но уже в наносостоянии, на что указывает значительная полуширина рефлексов на дифракционном спектре *b* на рис. 1. Первые признаки образования фатеритной модификации YBO₃ были зарегистрированы после последовательных отжигов через каждые 50° в течение 30 min при температуре 650°С (спектр *c* на рис. 1). Полный синтез бората иттрия закончился при 700°С (спектр *d* на рис. 1), и дальнейшее повышение температуры вплоть до 1100°С не привело к изменению фазового состава.

Другая ситуация наблюдалась при введении в раствор исходных оксидов 5% атомов Sc при получении прекурсорного состояния YBO₃. На рис. 2 показаны дифрактограммы исходного прекурсорного состояния $Y_{0.95}Sc_{0.05}BO_3$ и после отжига при $T = 400^{\circ}C$ в течение 2 h. Обращают на себя внимание два момента: очень высокое фоновое рассеяние на малых углах (5–15 deg) и появление нового галообразного рефлекса на меньших углах уже после отжига при 400°С. Известно, что интенсивное фоновое рассеяние на малых углах может быть обусловлено большой долей атомов, имеющих случайное расположение по отношению друг к другу (газовое приближение, [20,21]). Наглядно видно, что доля таких атомов резко уменьшается даже при низких температурах отжига. Такое снижение числа неупорядоченных атомов сопровождается появлением нового галообразного отражения с ближним порядком

Рис. 2. Дифрактограммы аморфного прекурсорного состояния Y_{0.95}Sc_{0.05}BO₃.

Рис. 3. Дифрактограммы структурных состояний $Y_{0.95}Sc_{0.05}BO_3$, полученных при последовательных отжигах исходно аморфного прекурсорного состояния. $a - 700^{\circ}C(1 h)$; $b - 700^{\circ}C(1 h) + 800^{\circ}C(3 h) + 900^{\circ}C(4 h)$; $c - 1050^{\circ}C(4 h)$. $(hkl)_c$ — индексы отражений от фазы кальцита, $(hkl)_v$ — индексы отражений от фазы фатерита.

в упаковке атомов, но с межатомным расстоянием в первой координационной сфере, большем (меньшие углы рассеяния), чем в первой координационной сфере исходного состояния (большие углы рассеяния).

В отличие от случая чистого бората иттрия дальнейшее повышение температуры отжига прекурсора $Y_{0.95}Sc_{0.05}BO_3$ не сопровождалось восстановлением кристаллической структуры Y_2O_3 . Аморфное состояние прекурсора сохранялось до 700 °С. Первые признаки образования кристаллической структуры появились при отжиге прекурсорного состояния при 700 °С в течение 1 h (спектр *a* на рис. 3). При этом на дифрактограмме наряду с остатками аморфной матрицы прекурсора регистрировались рефлексы $(hkl)_v$ фатеритной моди-

структуры. Дальнейшие последовательные отжиги при 700°C в течение 3 h, затем при 800°C в течение 3 h и при 900°С в течение 4 h привели к падению интенсивности галообразных рефлексов и росту интенсивности отражений $(hkl)_v$ фатеритной модификации, а также интенсивности дополнительных рефлексов (*hkl*)_c новой неизвестной фазы. Детальный анализ показал, что дополнительные рефлексы (hkl)_c могут быть отнесены к ромбоэдрической кальцитной модификации с параметрами решетки a = 4.964 Å, c = 16.433 Å, неизвестной в равновесном состоянии YBO3. При этом важно подчеркнуть, что пиковая интенсивность самого сильного лифракционного рефлекса (104) фазы кальцита составляет ~ 30% от пиковой интенсивности самого сильного дифракционного рефлекса (102) равновесной фазы фатерита. Можно предположить, что и долевое отношение фаз кальцита и фатерита УВО3 находятся на таком же (или близком) уровне. При этом заметим, что количество легирующих атомов Sc не превышало 5% и никакой кальцитной модификации ScBO₃ обнаружено не было. Налицо аномальное влияние легирования на фазовые состояния YBO3 при синтезе из аморфного прекурсорного состояния с добавками атомов скандия.

фикации YBO3 и серия рефлексов неизвестной ранее

Полученный результат аномального влияния легирования на фазообразование при твердофазном синтезе YBO₃ из аморфного прекурсорного состояния подтверждается результатами синтеза YBO₃ из гомогенизированной смеси микропорошков: 1.0Y₂O₃ + 1.1H₃BO₃ + 0.05Sc₂O₃ в стехиометрическом соотношении будущей фазы Y_{0.95}Sc_{0.05}BO₃. На рис. 4 показаны дифрактограммы последовательных структурных состояний, по-

Рис. 4. Трансформация дифракционных спектров при твердофазном синтезе YBO₃ из гомогенизированной смеси микроскопических порошков $0.95Y_2O_3$ $1.1H_3BO_3$ и $0.05Sc_2O_3$. *а* дифрактограмма исходной смеси микропорошков, T_{room} ; *b* дифрактограмма смеси после отжига при $T = 600^{\circ}$ C в течение 1 h; *с* — дифрактограмма смеси после дополнительного отжига при $T = 700^{\circ}$ C в течение 1 h; *d* — дифрактограмма смеси после дополнительного отжига при $T = 900^{\circ}$ C в течение 2 h.

лученных в процессе синтеза Y_{0.95}Sc_{0.05}BO₃ из смеси микропорошков простых оксидов. Спектр а на рис. 4 соответствует исходному состоянию набора порошков. Самый интенсивный рефлекс относится к кристаллическому состоянию бората водорода Н₃ВО₃. При температуре отжига 600°C H₃BO₃ расплавляется, и на дифрактограмме остаются только отражения от микропорошка Y_2O_3 (спектр *b* на рис. 4). Повышение температуры отжига до 700°С приводит к частичному образованию фазы YBO3 и сохранению оксида иттрия. Полное превращение заканчивается при $T = 900^{\circ}$ С образованием бората иттрия и едва заметного количества кальцитной фазы бората скандия ScBO3. Никакой кальцитной модификации YBO3 при этом не наблюдается. Таким образом, в случае синтеза YBO3 традиционным способом твердофазного синтеза из гомогенизированной смеси исходных микропорошков никакого заметного влияния легирующих добавок на фазообразование не происходит. И наоборот, происходит кардинальное изменение структурных трансформаций при синтезе УВО3 из аморфного прекурсорного состояни, легированного 5% атомов Sc.

3.2. ScBO₃.

Другая ситуация наблюдается при легировании ScBO₃ атомами иттрия. Так же как и в случае легирования бората иттрия атомами скандия, были проведены три последовательных синтеза:

1) последовательный изотемпературный отжиг аморфного прекурсорного состояния ScBO₃ без легирующих добавок,

 последовательный изотемпературный отжиг аморфного прекурсорного состояния ScBO₃, легированного 5% атомов Y,

3) последовательный изотемпературный отжиг гомогенизированной смеси микропорошков Sc_2O_3 , H_3BO_3 и Y_2O_3 в соотношении состава будущей фазы $Sc_{0.95}Y_{0.05}BO_3$. Температуры отжига были соответственно 400, 500, 600, 700, 800, 900 и 1050°С.

При синтезе чистого бората скандия, как и в случае синтеза бората иттрия из аморфного прекурсорного состояния без легирования, никаких новых фазовых состояний кроме известной кальцитной модификации ScBO₃ зарегистрировано не было. Однако структурное поведение образца без легировния сильно отличалось от структурного поведения легированного образца. В частности, при отжиге аморфного прекурсора без легирования, как и при синтезе YBO₃, при 400°C наблюдалось восстановление кристаллической структуры оксида скандия Sc₂O₃, но уже в наносостоянии, на что указывает значительная полуширина рефлексов на дифракционном спектре а на рис. 5. Полное формирование кальцитной модификации ScBO₃ завершилось при температуре 700°С. При этом на дифрактограмме кроме рефлексов от кальцитной фазы бората скандия наблюдаются слабые остаточные рефлексы от чистого оксида скандия (спектр b на рис. 5). Восстановление

Рис. 5. Дифрактограммы структурных состояний ScBO₃, полученные при последовательных отжигах аморфного прекурсорного состояния без легирующих добавок. $a - 400^{\circ}$ C (1 h); $b - 400^{\circ}$ C(1 h) + 500^{\circ}C(1 h) + 600^{\circ}C(1 h) + 700^{\circ}C(1 h); $c - 400^{\circ}$ C(1 h) + 500^{\circ}C(1 h) + 600^{\circ}C(1 h) + 700^{\circ}C(1 h) + 800^{\circ}C(1 h) + 900^{\circ}C(1 h) + 1050^{\circ}C(1 h). (*hkl*) — индексы отражений от восстановлений фазы Sc₂O₃, (*hkl*)_c — индексы отражений от фазы кальцита ScBO₃.

Рис. 6. Дифрактограммы аморфного прекурсорного состояния $Sc_{0.95}Y_{0.05}BO_3$.

оксида скандия предположительно обусловлено потерей бора при высоких температурах отжига. Дополнительные последовательные отжиги вплоть до 1100°С не приводили к новым структурным трансформациям.

В отличие от синтеза чистого бората скандия синтез $Sc_{0.95}Y_{0.05}BO_3$ не сопровождался восстановлением из аморфного прекурсора наноскопического оксида скандия при 400°С. Аморфное состояние сохранялось до температуры отжига 700°С, испытывая значительные изменения локального порядка в процессе роста температуры (рис. 6). Полная кристаллизация происходила при отжиге прекурсорного состояния лишь при температуре

Рис. 7. Дифрактограммы структурных состояний $Sc_{0.95}Y_{0.05}BO_3$, полученные при последовательных отжигах исходно аморфного прекурсорного состояния. $a - 400^{\circ}C(1 h) + 500^{\circ}C(1 h) + 600^{\circ}C(1 h) + 700^{\circ}C(1 h) + 800^{\circ}C(1 h); b - 900^{\circ}C(1 h), c - 1050^{\circ}C(4.5 h). (hkl)_c$ — индексы отражений от фазы кальцита, X — положение отражений от X-фазы.

Рис. 8. Дифрактограммы структурных состояний ScBO₃ + 5% Y, полученные при последовательных отжигах гомогенизированной смеси микропорошков Sc₂O₃, H₃BO₃ и 5% Y₂O₃. a -дифрактограмма исходной смеси микропорошков, $T_{\text{гоот}}$; b -дифрактограмма смеси после отжига ($T = 600^{\circ}$ C, 1 h); c -дифрактограмма смеси после дополнительного отжига ($T = 700^{\circ}$ C, 1 h); d -дифрактограмма смеси после отжига дополнительно при $T = 800^{\circ}$ C в течение 2 h.

800°С (рис. 7). При этом дополнительно к кальцитной фазе ScBO₃ был зарегистрирован набор отражений, которые, как оказалось, относятся к *X*-фазе [9,22]. Как указывалось выше, *X*-фаза была зафиксирована нами ранее при синтезе чистого бората скандия в режиме непрерывного нагрева прекурсорного состояния до высоких температур [9]. При этом синтез бората скандия в режиме непрерывного нагрева образца характеризовался

образованием не только X-фазы, но и фазы фатерита бората скандия. Однако в случае последовательных изотемпературных отжигов аморфного прекурсора образования фазы фатерита не происходит.

Доля X-фазы уменьшалась с увеличением температуры отжига (спектр b на рис. 7). При длительном отжиге при $T = 1050^{\circ}$ C X-фаза исчезала. Исчезновение X-фазы сопровождалось появлением на дифрактограмме едва заметных отражений от фазы простого оксида скандия (спектр c на рис. 7), как и в случае синтеза бората скандия без легирующих добавок.

Синтез ScBO₃ из микропорошков простых оксидов с добавками атомов У проводился для концентраций иттрия 2, 5 и 50%. Никаких добавочных фаз кроме ScBO3 и YBO3 получено не было. На рис. 8 в качестве примера показаны дифрактограммы образца после отжига гомогенизированного набора простых оксидов в соотношении будущего синтеза Sc_{0.95}Y_{0.05}BO₃. Как видно из рисунка, отжиг смеси исходных оксидов при 600°С в течение 1h привел к плавлению бората водорода Н₃ВО₃, что отображается исчезновением его отражений на спектре b рис. 8. Последующий отжиг образца при $T = 700^{\circ}$ С в течение 1 h привел к образованию как бората скандия, так и малой доли бората иттрия. Дальнейшее повышение температуры отжига не привело к существенному изменению интенсивности дифракционных спектров. Ни Х-фазы, ни фатеритной фазы бората скандия на всех этапах отжига обнаружено не было.

4. Обсуждение

Проведенные рентеновские дифракционные исследования выявили следующие отличительные особенности влияния легирующих добавок на фазообразование боратов YBO₃ и ScBO₃ из аморфного прекурсорного состояния:

 легирующие добавки приводят к стабилизации аморфного состояния прекурсоров до высоких температур;

2) образование кристаллических фаз YBO_3 и $ScBO_3$ при легировании происходит непосредственно из аморфной матрицы прекурсора, в то время как образованию кристаллических фаз YBO_3 и $ScBO_3$ без легирования предшествует восстановление в наносостоянии кристаллических фаз исходных оксидов (Y_2O_3 и Sc_2O_3 соответственно) уже при низких температурах отжига;

3) легирование приводит к образованию новых фазовых состояний YBO₃ и ScBO₃, неизвестных при синтезе этих боратов из аморфного прекурсорного состояния без легирования и при синтезе из смеси микропорошков исходных оксидов с той же концентрацией легирующего элемента.

Для того чтобы объяснить стабилизацию аморфного состояния прекурсоров до высоких температур при легировании, обратим внимание на то, что в легированных аморфных прекурсорах проходят значительные изменения локального порядка уже при низких температурах отжига. Последнее отображается на дифрактограммах в появлении дополнительных гало (рис. 2 и 6). Из рисунков видно, что дополнительные гало в обоих случаях образуются на малых углах рассеяния. Согласно теории дифракции [16,20], угловое положение центра тяжести гало (2 θ) определяется формулой 2 $R_1 \sin \theta = 1.23\lambda$, где R_1 — наименьшее расстояние между атомами или молекулами, а 1.23 является поправочным коэффициентом. Появление дополнительных гало на малых углах может означать образование устойчивых многоатомных комплексов, которые предположительно и препятствуют дальнейшей кристаллизации.

При объяснении механизма образования новых фазовых состояний на пути синтеза YBO₃ и ScBO₃ из аморфного прекурсорного состояния, легированного инородными атомами P3M, следует выделить два аспекта проблемы. Первый аспект заключается в объяснении различия структурных трансформаций при синтезе боратов P3M из легированного аморфного прекурсорного состояния и из гомогенизированной смеси микропорошков исходных оксидов с добавками в шихту легирующих оксидов с тем же атомным содержанием легирующих атомов, что закладывалось при получении аморфного прекурсорного состояния.

Второй аспект — этот ответ на вопрос, почему при синтезе боратов из легированного аморфного прекурсорного состояния образуются те, а не иные фазовые модификации, неизвестные при синтезе без легирования.

Сначала остановимся на первом аспекте проблемы. Обратим внимание на результаты низкотемпературного отжига шихты из смеси исходных микропорошков $Sc_2O_3 + 1.1H_3BO_3 + 5\%Y_2O_3$ и $Y_2O_3 + 1.1H_3BO_3$ +5%Sc₂O₃, представленные на спектрах b рис. 4 и 8. Сравнение этих спектров со спектрами исходного состояния смеси микропорошков (спектры *а* рис. 4 и 8) показывает, что на первом этапе отжига шихты из смеси микропорошков происходит плавление Н₃ВО₃. Это приводит к тому, что кристаллиты Sc₂O₃ и Y₂O₃ оказываются отделенными друг от друга и окруженными расплавом бората водорода. При дальнейшем повышении температуры отжига осуществляется гетерогенная кристаллизация, при которой каждый оксид независимо взаимодействует с боратом водорода, приводя к образованию характерных структур фатерита для YBO3 и кальцита для ScSO₃ в процентном соотношении закладки исходных оксидов.

Другая ситуация осуществляется при кристаллизации из легированного аморфного прекурсорного состояния. Аморфный прекурсор на локальном уровне представляет собой гомогенное распределение атомов, соответствующее стехиометрическому соотношению исходных оксидов. В этом случае процесс кристаллизации можно описывать как процесс гомогенной кристаллизации. Для объяснения механизма образования новых фазовых состояний на пути синтеза YBO₃ и ScBO₃ из аморфного прекурсорного состояния, легированного инородными атомами РЗМ, обратим внимание на результаты предыдущих исследований. Так, в работе [9] показано, что при синтезе YBO3 и ScBO3 в режиме непрерывного нагрева нелегированных аморфных прекурсоров на первых этапах кристаллизации наряду с известными для этих соединенй равновесными фазами образуются неизвестная для бората скандия фатеритная модификация и неизвестная для бората иттрия кальцитная модификация. Кроме того отметим, что согласно фазовой диаграмме бората лютеция LuBO₃ [19], для которого реализуется как кальцитная, так и фатеритная модификации, фаза кальцита является низкотемпературной. Это обстоятельство дает нам основание считать, что на первых этапах кристаллизации бората лютеция энергия образования критических зародышей кальцита $\Delta G_{\text{calcite crit.}}$ меньше энергии образования критических зародышей фазы фатерита $\Delta G_{\text{vaterite crit.}}$ Предположим, что соотношение $\Delta G_{\text{calcite crit.}} < \Delta G_{\text{vaterite crit.}}$ справедливо и для YBO3 и для ScBO3. Используем это предположение для гипотетической модели, объясняющей образование кальцитной модификации бората иттрия при синтезе YBO3 из аморфного прекурсорного состояния, легированного атомами скандия, и невозможность образования фатеритной модификации ScBO3 при легировании прекурсора атомами иттрия.

Согласно теории флуктуаций [23], вероятность события, при котором потенциал системы, в нашем случае аморфной, отличается от среднего на величину образования критического зародыша $\Delta G_{j, crit.}$ фазы j, будет пропорциональна $\exp(-\Delta G_{j, crit.}/k_BT)$. Предположим, что образование критических зародышей определяется только одним сортом атомов i. Тогда число зародышей n_j в единице объема в предположении их термодинамического равновесия с атомами i с плотностью n_i согласно принципу Больцмана [24,25] задается соотношением

$$n_j \sim n_i \exp(-\Delta G_{j,\text{crit.}}/k_B T).$$
 (1)

Согласно этому выражению, в аморфном прекурсоре возможно образование зародышей любых структурных образований j. Вопрос в том, каково соотношение плотности зародышей различных фазовых состояний j при данной температуре и с какой скоростью будут потом разрастаться эти зародыши. Это зависит от скорости зародышеобразования. Скорость образования критических зародышей W_i , т.е. число зародышей, формирующихся в единице объема за единицу времени, пропорциональна их плотности и частоте v_j присоединения атомов i к критическому зародышу

$$W_j = v_j n_j \sim v_j n_i \exp(-\Delta G_{j,\text{crit.}}/k_B T).$$
(2)

В свою очередь v_j зависит от частоты v перехода атома i через границу раздела фаз и от плотности n_s атомов i, находящихся в окрестности критического зародыша

$$W_i = \nu n_s C_1 \exp(-\Delta G_{i, \text{crit.}}/k_B T).$$
(3)

Рассмотрим, как эти формулы можно применить к образованию фазы кальцита при синтезе YBO3 из прекурсорного состояния, легированного атомами Sc. Будем предполагать, что частота и перехода атомов Sc и У через границу зародыша одна и та же вне зависимости от структуры ј критического зародыша. Согласно приведенному выше предположению $\Delta G_{\text{calcite crit.}} < \Delta G_{\text{vaterite crit.}}$ Это позволяет предположить, что при низких температурах отжига в основном будут образовываться критические зародыши кальцитой модификации на скоплениях атомов Sc. Будут ли такие зародыши разрастаться в дальнейшем, зависит от плотности примыкающих к зародышу атомов Sc и Y. Поскольку процентное содержание атомов скандия как легирующих атомов значительно меньше плотности атомов иттрия как матричных (0.05 и 0.95 соответственно), дальнейший рост зародышей кальцитной модификации возможен только за счет присоединения атомов иттрия к зародышам ScBO₃. Такой процесс принципиально возможен, поскольку, как отмечено выше, рост кальцитной модификации бората иттрия возможен и без легирующих атомов, хотя и в несколько необычном режиме синтеза. Если предложенный выше механизм образования кальцитной модификации бората иттрия имеет место, то в центре нанокристаллитов кальцитной модификации YBO3 находятся зародыши кальцитной модификации ScBO3. В этом случае можно сделать заключение о реализации эффекта структурного заражения.

Понятно, что одновременно будет расти и равновесная фатеритная модификация YBO₃. Действительно, хотя член $\exp(-\Delta G_{\text{vaterite crit.}}/k_BT)$ в уравнении (3) и значительно меньше члена $\exp(-\Delta G_{\text{calcite crit.}}/k_BT)$, число окружающих критический зародыш атомов Y значительно больше числа атомов Sc (0.95 и 0.05 соответственно). В дальнейшем с повышением температуры отжига число зародышей фатеритной модификации бората иттрия будет расти быстрее благодаря как повышению температуры ($-\Delta G_{\text{vaterite crit.}}/k_BT$ будет уменьшаться), так и большой плотности атомов иттрия (0.95) как матричных атомов. Соответственно с ростом температуры будет расти и доля равновесной фатеритной модификации бората иттрия.

Другая ситуация будет наблюдаться при синтезе бората скандия ScBO₃ из аморфного прекурсорного состояния, легированного атомами иттрия. Поскольку в нашем предположении энергия образования критических зародышей кальцита $\Delta G_{\text{calcite crit.}}$ меньше энергии зарождения критических зародышей фатерита $\Delta G_{\text{vaterite crit.}}$ и плотность атомов Sc (0.95) значительно больше плотности легирующих атомов Y (0.05), плотность критических зародышей кальцитной модификации ScBO₃ на всех этапах кристаллизации будет значительно превышать число зародышей фатеритной модификации YBO₃. Эти два обстоятельства, а именно различие в энергии зарождения критических зародышей кальцита и фатерита и значительное различие в процентном соотношении матричных и легирующих атомов, и объясняют механизм

Выше предполагалось, что критический зародыш развивается за счет присоединения только одного сорта атомов, а именно атомов Y или атомов Sc. Приведенное рассуждение, на наш взгляд, справедливо и в случае присоединения сразу нескольких сортов атомов (в нашем случае атомов бора и кислорода). Поскольку присоединение разного типа атомов будет независимым и имеет вероятностный характер, для определения конечной скорости роста критических зародышей мы должны перемножить между собой вероятности присоединения к критическому зародышу каждого сорта атомов. Однако поскольку плотность атомов бора и кислорода одинакова и для фатеритной, и для кальцитной модификации, дополнительные множители будут одинаковыми и при синтезе бората иттрия с добавками атомов скандия при синтезе бората скандия с добавками атомов иттрия. Это означает, что их влияние всегда будет одинаковым независимо от структурной модификации бората. Это означает, что только соотношение плотности легирующих и матричных атомов Sc и Y и различие в энергии образования критических зародышей кальцитной и фатеритной модификаций будут определяющими в кинетике фазообразования.

Остается открытым вопрос о механизме образования X-фазы на первых этапах кристаллизации ScBO3 из аморфного прекурсорного состояния, легированного атомами иттрия. Недавними исследованиями установлено, что Х-фаза имеет структуру варвикита с общей формулой $M_1^{3+}M_2^{2+}$ OBO₃ [26]. При этом было обнаружено, что Х-фаз устойчиво образуется и без легирования при отжиге аморфного прекурсора, имеющего дефицит по бору. Можно предположить, что добавки атомов иттрия в прекурсор хотя и не образуют на ранних этапах низкотемпературных отжигов фазы фатерита, тем не менее как-то связывают на себя часть бора, приводят к его дефициту. На такую возможность указывает, в частности, появление дополнительного гало при отжиге аморфного прекурсора при низких температурах, на которое мы обращали внимание выше. Возможно, полученный дефицит бора и инициирует образование Х-фазы.

5. Заключение

Подводя итоги экспериментальным результатам и кратким обсуждениям, можно сделать следующие заключения. Добавки 5% атомов Sc в прекурсор при синтезе YBO₃ приводят к образованию дополнительно к равновесной фазе фатерита бората иттрия кальцитной модификации бората иттрия, неизвестной для этого соединения в равновесном состоянии, но являющейся равновесной фазой для ScBO₃. В то же время никаких дополнительных фаз при твердофазном синтезе бората

иттрия из смеси микропорошков и из аморфного прекурсорного состояния без легирования не наблюдается. В случае синтеза ScBO3 из аморфного прекурсора добавки 5% атомов У не приводят к образованию фатеритной модификации, но приводят к формированию так называемой Х-фазы. Никакой Х-фазы при синтезе бората скандия из смеси микропорошков исходных оксидов с добавками 5% атомов У и из аморфного прекурсорного состояния без легирования при этом не обнаруживается. Возможной причиной сильного различия фазовых последовательностей при синтезе боратов из аморфного прекурсорного состояния с легирующими добавками по отношению к синтезу из аморфного прекурсорного состояния без легирующих добавок и к синтезу из смеси микропорошков с легирующими добавками является гомогенный характер кристаллизации для аморфных прекурсоров с добавками и гетерогенный характер кристаллизации как из смеси микропорошков, так и из аморфного прекурсорного состояния без легирующих добавок.

Список литературы

- A.I. Gusev, A.A. Rempel'. Nanocrystalline materials. Fizmatlit, M. (2001). 222 p; [Cambridge Int. Sci., Cambridge (2004)].
- [2] G.M. Sergeev. Nanochemistry. Moscow State University, M. (2003). 287 p.; [Elsevier, Amsterdam, (2006)].
- [3] S.Z. Shmurak, G.K. Strukova, I.M. Smyt'ko, N.V. Klassen, N.P. Kobelev, S.E. Derenzo, M.J. Weber. Nucl. Instrum. Meth. Phys. Res. A 537, 149 (2005).
- [4] N.V. Klassen, S.Z. Snmurak, I.M. Shmyt'ko, G.K. Strukova, S.E. Derenzo, M.J. Weber. Nucl. Instrum. Meth. Phys. Res. A 537, 144 (2005).
- [5] I.M. Shmytko, G.K. Strukova, E.A. Kudrenko. Cryst. Rep. 51, Suppl. 1, S163 (2006).
- [6] И.М. Шмытько, Е.А. Кудренко, Г.К. Струкова. ФТТ 50, 1108 (2008).
- [7] И.М. Шмытько, Г.К. Струкова. ФТТ 51, 1796 (2009).
- [8] И.М. Шмытько, Е.А. Кудренко, Г.К. Струкова. Письма в ЖЭТФ 86, 544 (2007).
- [9] И.М. Шмытько, Е.А. Кудренко, Г.К. Струкова. ФТТ 51, 1834 (2009).
- [10] G.K. Strukova, I.I. Zver'kova, V.P. Korgeov, G.V. Strukov. Superconductivity 3, 1515 (1990); 4, 2225 (1991).
- [11] G.K. Strukova, B.S. Red'kin, V.N. Kurlov, I.S. Pet'kov, S.N. Rossolenko, R.A. Dilanyan. Ferroelectrics 130, 333 (1992).
- [12] G.K. Strukova, V. Sedykh, I.I. Zver'kova, V.Sh. Shehtman. Appl. Phys. A 53, 426 (1992).
- [13] G.K. Strukova, I.S. Smirnova, A.V. Bazhenov, R.A. Dilanyan. Physica C 290, 267 (1996).
- [14] G.K. Strukova, V.V. Kedrov, V.N. Zverev, S.S. Khasanov, I.M. Ovchinnikov, I.E. Batov, V.A. Gasparov. Physica C 291, 207 (1997).
- [15] G.K. Strukova, I.I. Zver'kova, L.A. Dorosinskii, D.V. Shovkun, V.N. Zverev, U. Topal. Physica C: Superconductivity 387, 359 (2003).
- [16] А.Ф. Скрышевский. Структурный анализ жидкостей и аморфных тел. Высш. шк., М. (1980). 328 с.

- [17] М.П. Шаскольская. Кристаллография Учеб. пособие для втузов. 2-е изд. Высш. шк. М. (1984). 376 с.
- [18] Е.А. Кудренко, И.М. Шмытько, Г.К. Струкова. ФТТ 50, 924 (2008).
- [19] E.M. Levin. J. Am. Cer. Soc. 50, 53 (1967).
- [20] A. Guinier. Theorie et technique de la radiocristallographie. 2nd ed DUNOD, Paris, (1956). p. 604.
- [21] R.W. James. Optical principles of the diffraction of X-rays. Bell and Hyman, London (1948); [Instrannaya Literatura, M. (1950). 572 c.]
- [22] Е.А. Ткаченко, П.П. Федоров, С.В. Кузнецов, В.В. Воронов, С.В. Лаврищев, И.Е. Шукшин, И.В. Яроцкая, Н.Г. Кононова, Неорган. материалы 42, 207 (2006).
- [23] Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. Т. 5. Статическая физика. Наука, М. (1988).
- [24] И.Д. Морохов, Л.И. Трусов, С.П. Чижик. Ультрадисперсные металлические среды. Атомиздат, М. (1977).
- [25] А.Д. Помогайло, А.С. Розенберг, И.Е. Уфлянд. Наночастицы металлов в полимерах. Химия, М. (2000). 672 с.
- [26] E.A. Kudrenko, V. Morozov, I. Shmyt'ko, G. Strukov, T. Fursova. Acta Cryst. A 65, 185 (2009).