01;06

Спектр электронов и дырок в квантовой точке InAs, перенормированный деформацией гетеросистемы InAs/GaAs

© О.О. Данькив, Р.М. Пелещак

Дрогобычский государственный педагогический университет им. Ивана Франко, Украина E-mail: peleshchak@rambler.ru

Поступило в Редакцию 19 апреля 2005 г.

Получены аналитические выражения, определяющие энергетический спектр электронов и дырок в квантовой точке, находящейся в самосогласованном деформационном поле, созданном массивом когерентно-напряженных квантовых точек.

Предложен метод учета зависимости параметра рассогласования постоянных решеток на границе квантовой точки и окружающей матрицы от размеров квантовой точки и радиуса окружающей матрицы.

Показано, что внутренние упругие деформации, возникающие на границе квантовой точки и окружающей матрицы, влияют более существенно на спектр электронов в квантовой точке, чем на спектр дырок.

Введение. Для прогнозирования и управления характеристиками полупроводниковых приборов на основе квантовых точек (КТ), а также для создания новых приборов на их основе необходим тщательный анализ спектров носителей заряда в них [1–11]. Упругие внутренние напряжения в КТ существенно влияют на спектр электронных и дырочных состояний.

Цель настоящей работы состоит в теоретическом исследовании, в рамках модели деформационного потенциала, спектров носителей заряда в КТ, перенормированных деформацией гетероструктуры с КТ.

1. Модель гетеросистемы InAs/GaAs с когерентно-напряженными квантовыми точками InAs сферической симметрии. Рассматривается гетеросистема InAs/GaAs с когерентно-напряженными квантовыми точками InAs сферической симметрии. Чтобы свести задачу

33

с большим количеством КТ к задаче с одной КТ, мы принимаем следующее приближение: энергию попарного упругого взаимодействия КТ заменяем энергией взаимодействия каждой КТ с усредненным полем упругой деформации $\sigma_{ef}(N-1)$ всех остальных КТ.

Поскольку постоянная решетки материала InAs больше, чем матрицы GaAs, то при гетероэпитаксиальном выращивании в пределах псевдоморфного роста InAs на слой GaAs, материал InAs поддается деформации сжатия, а GaAs — растяжению.

Поэтому сферическую квантовую точку радиуса R_0 можно представить упругим дилатационным микровключением в виде упругого шара, который вставляют в сферическую полость в матрице GaAs, объем которой меньше объема микровключения на ΔV .

Чтобы вставить такое сферическое микровключение, необходимо его сжать и растянуть матрицу GaAs в радиальных направлениях.

2. Расчет потенциальной энергии электрона и дырки в квантовой точке InAs сферической симметрии с учетом деформации гетеросистемы InAs/GaAs. На рис. 1 показаны геометрия гетеросистемы InAs/GaAs с квантовыми точками InAs и зависимость потенциальной энергии электрона и дырки от радиуса r в гетеросистеме InAs/GaAs с квантовыми точками InAs без учета (штриховая линия) и с учетом действия (сплошная линия) всесторонней деформации, вызванной несоответствием параметров решеток материала КT и матрицы, различными характеристиками этих материалов.

Как видно из рисунка, характер квантующего потенциала определяется профилем дна зоны проводимости и вершины валентной зоны гетероструктуры.

Энергетические смещения краев разрешенных зон под действием упругих деформаций соответственно составляют:

$$\Delta E_c^{(i)} = a_c^{(i)} \varepsilon^{(i)}(R_0, R_1); \quad \Delta E_v^{(i)} = a_v^{(i)} \varepsilon^{(i)}(R_0, R_1); \quad [12]$$

где $\varepsilon^{(i)}(R_0, R_1) = \mathrm{Sp}\varepsilon^{(i)}; a_c^{(i)}, a_v^{(i)}$ — константы гидростатического деформационного потенциала зоны проводимости и валентной зоны соответственно; $i = \begin{cases} 1 \equiv \mathrm{InAs} \\ 2 \equiv \mathrm{CaAs} \end{cases}$.

Таким образом, потенциальная энергия электрона и дырки в напряженных КТ InAs в гетеросистеме InAs/GaAs определяется как

$$U_{e}(r) = \begin{cases} U_{e}^{(1)}(r) \\ U_{e}^{(2)}(r) \end{cases} = \begin{cases} 0, & 0 \leq r \leq R_{0}, \\ |\Delta V_{c}(0)| - a_{c}^{(1)} \cdot \varepsilon^{(1)} + a_{c}^{(2)} \cdot \varepsilon^{(2)}, & R_{0} \leq r \leq R_{1}, \end{cases}$$
(1)

$$U_{h}(r) = \begin{cases} U_{h}^{(1)}(r) \\ U_{h}^{(2)}(r) \end{cases} = \begin{cases} 0, & 0 \leqslant r \leqslant R_{0}, \\ |\Delta V_{h}(0)| + a_{v}^{(1)} \cdot \varepsilon^{(1)} + a_{v}^{(2)} \cdot \varepsilon^{(2)}, & R_{0} \leqslant r \leqslant R_{1}. \end{cases}$$

Здесь $\Delta V_c(0)$, $\Delta V_h(0)$ — глубина потенциальных ям электрона и дырки в KT InAs в недеформированной гетеросистеме InAs/GaAs.

Потенциальную энергию носителей заряда с учетом деформационного вклада можно рассчитать, имея компоненты тензора деформации, которые зависят от радиуса R_0 КТ, ее формы и радиуса R_1 окружающей матрицы.

Для определения компонентов тензора деформации необходимо найти явный вид смещений атомов $u_r^{(1)}$, $u_r^{(2)}$ в материалах InAs и GaAs соответственно. С этой целью запишем уравнение равновесия [13]:

$$\nabla \operatorname{div} \mathbf{u} = 0 \tag{3}$$

с такими краевыми условиями для сферической КТ:

$$\begin{cases} 4\pi R_0^2 \left(u_r^{(2)} |_{r=R_0} - u_r^{(1)} |_{r=R_0} \right) = \Delta V, & \Delta V = 4\pi R_0^3 f, \\ \sigma_{rr}^{(1)} |_{r=R_0} = \sigma_{rr}^{(2)} |_{r=R_0} + P_L, & P_L = \frac{2\alpha}{R_0}, \\ \sigma_{rr}^{(2)} |_{r=R_1} = -\sigma_{ef} (N-1) \end{cases}$$
(4)

(левая часть первого из уравнений системы (4) равна геометрической разнице ΔV объемов микровключения и полости в матрице GaAs. Здесь: R_0 — радиус квантовой точки, R_1 — радиус пластины матрицы GaAs + радиус R_0 KT InAs, P_L — лапласовское давление, α — поверхностная энергия KT InAs [14]).

Параметр f выражает рассогласования постоянных решеток a_1, a_2 и модулей сдвига G_1, G_2 в наноматериалах InAs и GaAs соответственно. В отличие от работ [5,10,11] в этой задаче параметр рассогласования f

Рис. 1. Зависимость потенциальной энергии электрона и дырки от радиуса *г* в гетеросистеме InAs/GaAs с квантовыми точками InAs.

является функцией размеров КТ и радиуса окружающей матрицы:

$$f = f_1 + f_2,$$

где f_1, f_2 — относительные изменения параметров решеток материалов КТ и окружающей матрицы соответственно, вызванные различием радиальной $a_{rr}^{(i)}$ и угловых составляющих $a_{\theta\theta}^{(i)}, a_{\phi\phi}^{(i)}$ параметра решетки как в материале КТ, так и в окружающей матрице относительно их значений в объемных материалах InAs и GaAs.

Механическое напряжение $\sigma_{rr}^{(i)}$ и $\sigma_{rr}^{(2)}$ в материалах InAs и GaAs равно [15]:

$$\sigma_{rr}^{(i)} = \frac{E_i}{(1+\nu_i)(1-2\nu_i)} \left[(1+\nu_i)\varepsilon_{rr}^{(i)} + \nu_i(\varepsilon_{\varphi\varphi}^{(i)} + \varepsilon_{\Theta\Theta}^{(i)}) \right],$$
(5)

где v_i, E_i — коэффициент Пуассона и модуль Юнга материала КТ и окружающей матрицы, которые выражаются известным образом [15] через упругие постоянные этих материалов.

Решение уравнения (3) в случае сферических КТ имеет вид:

$$u_r^{(1)} = C_1 r + \frac{C_2}{r^2}, \quad 0 \le r \le R_0,$$
 (6)

$$u_r^{(2)} = C_3 r + \frac{C_4}{r^2}, \quad R_0 \leqslant r \leqslant R_1.$$
 (7)

Поскольку в т. r = 0 смещение должно быть конечным, то в решении (6) положим $C_2 = 0$.

Поле смещений определяет следующие компоненты тензора деформации:

$$\varepsilon_{rr}^{(1)} = C_1,\tag{8}$$

$$\varepsilon_{\varphi\varphi}^{(1)} = \varepsilon_{\Theta\Theta}^{(1)} = C_1, \qquad (9)$$

$$\varepsilon_{rr}^{(2)} = C_3 - \frac{2C_4}{r^3},\tag{10}$$

$$\varepsilon_{\varphi\varphi}^{(2)} = \varepsilon_{\Theta\Theta}^{(2)} = C_3 + \frac{C_4}{r^3}.$$
 (11)

Коэффициенты C_1, C_3, C_4 находим из решения системы (4) с учетом (5)–(11).

3. Энергетические спектры электрона и дырки в KT InAs в напряженной гетеросистеме InAs/GaAs. Энергетический спектр тяжелых дырок в кристалле InAs в сравнительно широких пределах $(E^{(hh)} < 0.4 \text{ eV})$ достаточно хорошо описывается квадратичным приближением, а электронный спектр в том же приближении в более узком интервале энергий [16,17].

С этой целью нужно решить уравнение Шредингера

$$H_{e,h}\Psi_{e,h}(\mathbf{r}) = E^{(e,h)}\Psi_{e,h}(\mathbf{r})$$
(12)

с гамильтонианом

$$H_{e,h} = -\frac{\hbar^2}{2} \nabla \frac{1}{m_{e,h}^*(\mathbf{r})} \nabla + U_{e,h}(r, R_0).$$
(13)

Эффективные массы электрона $m_{1,2_e}^*$ (дырки $m_{1,2_h}^*$) в КТ и в окружающей матрице считаем известными и равными тем, которыми они характеризуются в соответственных массивных кристаллах.

Решение уравнения Шредингера (12) в сферической системе координат имеет вид:

$$\Psi_{nlm}(r,\Theta,\varphi) = R_{nl}(r) \cdot Y_{lm}(\Theta,\varphi).$$
(14)

Здесь $Y_{lm}(\Theta, \phi)$ — сферические функции Лежандра [18].

Радиальные функции $R_{nl}(r)$ выражаются через сферические функции Бесселя [18]:

$$R_{1_{nl}}(r) = A \cdot j_l(k_{e,h}r) + B \cdot n_l(k_{e,h}r), \quad 0 \leqslant r \leqslant R_0, \tag{15}$$

$$R_{2_{nl}}(r) = C \cdot h_l^{(1)}(i\chi_{e,h}r) + D \cdot h_l^{(2)}(i\chi_{e,h}r), \quad R_0 \leqslant r \leqslant R_1,$$
(16)

где

$$k_{e,h}^{2} = \frac{2m_{1_{e,h}}^{*}}{\hbar^{2}} E_{nl}^{(e,h)}, \qquad \chi_{e,h}^{2} = \frac{2m_{2_{e,h}}^{*}}{\hbar^{2}} \left(U_{e,h}^{(2)}(r) - E_{nl}^{(e,h)} \right), \qquad (17)$$

а потенциальная энергия электрона и дырки $U_{e,h}(r)$ определяется по формулам (1), (2).

Условия непрерывности волновых функций и плотности потока вероятности на границе раздела КТ-матрица

$$\begin{cases} R_1(r)_{|r=R_0} = R_2(r)_{|r=R_0}, \\ \frac{1}{m_{1_{e,h}}^*} \frac{dR_1(r)}{dr}_{|_{r=R_0}} = \frac{1}{m_{2_{e,h}}^*} \frac{dR_2(r)}{dr}_{|_{r=R_0}} \end{cases}$$
(18)

вместе с условием регулярности функций $R_{nl}(r)$ при $r \to 0$ и $r \to R_1$, а также с учетом нормировки определяют спектр E_{nl} и волновые функции электрона и дырки в гетеросистеме InAs/GaAs с квантовыми точками InAs.

4. Численные расчеты и обсужение результатов. Численный расчет энергий основного и возбужденного состояний носителей заряда

	а,	$C_{11},$	C ₁₂ ,	a_c ,	a_{ν} ,	E_g ,	m_{\star}/m_{0}	m_h/m_0	α (110)
	Å	Mbar	Mbar	eV	eV	eV	mejmu		N/m
InAs	6.08	0.833	0.453	-5.08	1	0.36	0.057	0.41	0.657
GaAs	5.65	1.223	0.571	-7.17	1.16	1.452	0.065	0.45	

Таблица 1. Параметры кристаллов InAs и GaAs

в КТ как функции размеров КТ был произведен для широко используемой наногетеросистемы InAs/GaAs с КТ InAs, параметры которой представлены в табл. 1 [14,19,20].

На рис. 2 и 3 приведены результаты расчета зависимостей энергий электрона (*a*) и дырки (*b*) в основном и возбужденном состояниях от размера R_0 KT InAs при $R_1 = 500$ Å. Как видно из рисунков, с увеличением размера KT электронные и дырочные уровни монотонно понижаются, а расстояние между ними уменьшается, хотя глубина потенциальных ям как электрона, так и дырки имеет немонотонный характер. Увеличение размера R_0 KT от 40 к 50 Å, что соответствует

Рис. 2. Зависимость энергии основного состояния E_{00} от размера КТ: a — электрона; b — дырки в КТ InAs в напряженной гетеросистеме InAs/GaAs: l — без учета деформационных эффектов; 2 — с учетом деформационных эффектов.

Рис. 3. Зависимость энергии возбужденного состояния E_{01} от размера КТ: a — электрона; b — дырки в КТ InAs в напряженной гетеросистеме InAs/GaAs: l — без учета деформационных эффектов; 2 — с учетом деформационных эффектов.

уменьшению глубины потенциальных ям электронов на 1.4 meV, дырок — на 0.3 meV, приводит к уменьшению энергии (кривые 2 на рис. 2 и 4):

— основного состояния E_{00} электрона на 68.5 meV; дырки — на 14.4 meV;

— возбужденного состояния E_{01} электрона на 126.5 meV; дырки — на 29.3 meV.

Влияние деформационных эффектов на энергию основного и возбужденного состояний носителей заряда в КТ показано в табл. 2

Таблица 2. Влияние деформационных эффектов на энергию основного и возбужденного состояний электрона и дырки в КТ InAs радиусом $R_0 = 40$ Å $(R_1 = 500$ Å)

	$E_{00}^{(e)}, \mathrm{meV}$	$E_{00}^{(h)}$, meV	$E_{01}^{(e)}, \mathrm{meV}$	$E_{01}^{(h)}$, meV
Без учета	250.31	44.58	496.41	90.84
деформационных эффектов С учетом	238.69	44.23	467.71	90.09
деформационных эффектов				

Письма в ЖТФ, 2005, том 31, вып. 16

(для $R_0 = 40$ Å; $R_1 = 500$ Å). Как видно из приведенных результатов (табл. 2), внутренние упругие деформации вызывают понижения энергетических уровней как электронов, так и дырок в КТ InAs.

Список литературы

- Леденцов Н.Н., Устинов В.М., Щукин В.А., Копьев П.С., Алфёров Ж.И., Бимберг Д. // ФТП. 1998. Т. 32 (4). С. 385.
- [2] Цацульников А.Ф., Воловик Б.В. // ФТП. 2000. Т. 34 (3). С. 330.
- [3] Малеев Н.А., Жуков А.Е. // ФТП. 2000. Т. 34 (5). С. 612.
- [4] Талалаев В.Г., Новиков Б.В. // ФТП. 2000. Т. 34 (4). С. 467.
- [5] Tishchenko V.V., Raptis Y.S., Anastassakis E., Bondar N.V. // Solid. State Communs. 1995. V. 96 (10). P. 793.
- [6] Reimann S., Manninen M. // Reviews of Modern Physics. 2002. V. 74 (4). P. 1283.
- [7] Ткач М.В., Маханець А.М., Зегря Г.Г. // ФТП. 2002. Т. 36 (4). С. 543.
- [8] Wang X.F., Lei X.L. // Phys. Rev. B. 1994. V. 49 (11). P. 4780.
- [9] Цацульников А.Ф., Егоров А.Ю. // ФТП. 1997. Т. 31 (7). С. 851.
- [10] Ovid'ko I.A., Sheinerman A.G. // Appl. Phys. A. 2002. V. 74 (2). P. 273.
- [11] Евтихиев В.П., Константинов О.В., Матвеенцев А.В., Романов А.Е. // ФТП. 2002. Т. 36 (1). С. 79.
- [12] Бир Г.Л., Пикус Г.Е. Симметрия и деформационные эффекты в полупроводниках М.: Наука, 1972.
- [13] Теодосиу К. Упругие модели дефектов в кристаллах. М.: Мир, 1985.
- [14] Pehlke E., Moll N. Materials Theory, mtrl-th/9607012 v1, 19 Jul. 1996. P. 137– 144.
- [15] Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965.
- [16] Landolt-Bornstein // New Series. III. V. 22a (Berlin, Springer).
- [17] Chelikowsky J.R., Cohen M.L. // Phys. Rev. B. 1976. V. 14 (2). P. 556.
- [18] Флюгге З.З. Задачи по квантовой механике. М.: Мир, 1974.
- [19] Oteish A., Needs R.J. // Physical Review B. 1992. V. 45 (3). P. 1317.
- [20] G. Chris, Van de Walle // Physical Review B. 1989. 39 (3). P. 1871.