01;02;07 Новый метод возбуждения высококонтрастного темного резонанса на *D*₂-линии в парах ⁸⁷Rb

© Г.А. Казаков, Б.Г. Матисов, Ж. Дельпорт, Г. Милети

ГОУ С.-Петербургский государственный политехнический университет, Россия E-mail:kazakov@quark.stu.neva.ru Национальный центр космических исследований, авеню Белин 18, Тулуза, 31401, Франция Кантональная обсерватория Невшателя, ул. Дель Обсерваторе, 58, СН-2000, Невшатель, Швейцария

Поступило в Редакцию 9 марта 2005 г.

Предложен новый метод улучшения параметров темного резонанса на D_2 -линии в парах ⁸⁷Rb, основанный на использовании оптической накачки. В качестве накачки используется двухчастотное линейно поляризованное лазерное излучение, направление распространения которого перпендикулярно пробному полю, распространяющемуся вдоль ячейки с парами атомов рубидия. Показано, что накачка приводит к существенному улучшению параметров темного резонанса по сравнению с циркулярно поляризованным полем. Качественные рассуждения подтверждаются численными расчетами.

Квантовые стандарты частоты сейчас приобретают все большее значение в различных научных и инженерных приложениях. В последнее время наблюдается значительный всплеск интереса, связанный с возможностью создания атомных часов на основе эффекта когерентного пленения населенностей (КПН).

Эффект КПН атомов при взаимодействии с резонансным полем хорошо известен (см. обзор [1] и цитированную там литературу). Усилия, направленные на создание атомных часов на основе КПН в ячейке с парами щелочных металлов, предпринимаются разными научными группами [2–4]. Главное преимущество подобных атомных часов заключается в том, что соответствующий эталонный переход возбуждается чисто оптическими методами, что позволяет создавать компактные приборы с низким энергопотреблением за счет отсутствия

71

СВЧ-резонатора. При этом возникает ряд задач, связанных с оптимизацией параметров сигнала (амплитуда, ширина, контраст и крутизна амплитудно-частотной характеристики). В настоящей работе предложен новый метод, позволяющий существенно улучшить характеристики сигнала. Метод основан на использовании двухчастотной оптической накачки для аккумулирования атомов на рабочих подуровнях.

В атомных часах рабочими подуровнями являются зеемановские подуровни с проекцией момента m = 0 на двух сверхтонких компонентах основного состояния в атомах щелочных металлов, а переход между этими подуровнями принято называть эталонным. В атоме ⁸⁷Rb рабочими являются подуровни $|1\rangle = |F = 1, m = 0\rangle$ и $|2\rangle = |F = 2, m = 0\rangle$ (рис. 1). Когерентность между ними формируется за счет двухфотонных рамановских переходов, индуцированных циркулярно поляризованным коррелированным двухчастотным излучением (с частотами ω_1 и ω_2). При этом обычно используются однонаправленные бегущие волны, а спектроскопическим сигналом является поглощение в зависимости от разности частот ($\omega_1 - \omega_2$). Когда разность сканируется вблизи частоты Δ_{hfs} сверхтонкого расщепления в основном состоянии, то наблюдается узкий провал в поглощении (темный резонанс), ширина которого определяется скоростью релаксации когерентности в основном состоянии и параметрами поля.

Одним из основных параметров, определяющих стабильность атомных часов (стандартов частоты), является крутизна *S* амплитудночастотной характеристики [5–8]:

$$S = \left| d^2 I / d\Omega^2 \right|_{\Omega = 0},$$

где *I* есть ток фотодетектора, $\Omega = (\Delta_{hfs} - (\omega_1 - \omega_2))/2$ — двухфотонная расстройка. По порядку величины крутизна составляет отношение амплитуды резонанса к квадрату его ширины [6].

При разработке квантовых стандартов частоты большое внимание уделяется нахождению оптимальных условий работы прибора, при которых крутизна максимальна. Одним из способов оптимизации является выбор схемы возбуждения. У атома щелочного металла, взаимодействующего с однонаправленным циркулярно поляризованным полем, всегда существует холостой уровень (так называемый "карман"), который является зеемановским подуровнем основного состояния с максимальной (для σ^+ -поляризации лазерного поля) или минимальной (для σ -поляризации лазерного поля) проекций магнитного момента.

Рис. 1. Схема взаимодействия атомов Rb^{87} с лазерными полями: *a* — пространственная конфигурация ячейки и полей; *b* — схема индуцированных оптическими полями переходов в атоме ⁸⁷Rb. Рабочие подуровни основного состояния обозначены черными прямоугольниками. Переходам, индуцированным полем накачки, соответствуют вертикальные линии, а переходам, индуцированным пробным σ^+ -поляризованным полем, — наклонные линии.

Атомы, накапливаясь в "кармане", выпадают из процесса формирования когерентности между рабочими подуровнями $|1\rangle$ и $|2\rangle$ (отсутствует цикличность взаимодействия), что приводит к резкому уменьшению амплитуды (т. е. разности поглощения в ячейке в отсутствие двухфотонного резонанса и поглощения при выполненном условии двухфотонного резонанса) и контраста (т. е. отношения амплитуды к полному поглощению вдали от резонанса).

Одним из способов решения данной проблемы является использование встречных световых волн с противоположной циркулярной поляризацией [4]. В этом случае указанный выше холостой уровень отсутствует, но при этом наблюдается существенная пространственная периодическая вариация амплитуды резонанса с периодом $\pi/(k_1 - k_2)$, где $k_i = 2\pi/\lambda_i$ — волновое число поля с частотой ω_i . Эта вариация обусловлена разностью длин λ₁ и λ₂ волн для различных частотных компонент. Так, например, для атомов ⁸⁷Rb период составляет $\pi/(k_1 - k_2) \approx 2$ ст. Поэтому в ячейке размером $L \ge \pi/(k_1 - k_2)$ изза пространственного усреднения не наблюдается резкого увеличения амплитуды темного резонанса. В маленькой же ячейке размером $L \ll \pi/(k_1 - k_2)$ важную роль играют процессы релаксации на стенках. Для уменьшения их влияния увеличивают давление буферного газа (150 Torr при объеме ячейки 12 mm³, см. [9]), что приводит к снижению амплитуды резонанса и резкому увеличению его ширины. Данная схема возбуждения позволяет добиться лишь небольшого увеличения амплитуды по сравнению с циркулярно поляризованными волнами (примерно в 1.4 раза [9]).

Для обеспечения цикличности взаимодействия и увеличения амплитуды, контраста и крутизны резонанса нами предлагается новый метод, основанный на использовании двухчастотной оптической накачки (рис. 1). Положим, что на атомы ⁸⁷Rb в ячейке действует двухкомпонентное π -поляризованное лазерное поле (поле накачки, рис. 1, *a*)

$$\mathbf{E}_{pump} = \frac{\mathbf{e}}{2} \Big(E_3 \exp[i(k_3 x - \omega_3 t)] + E_4 \exp[i(k_4 x - \omega_4 t)] \Big) + c.c.,$$

одна из компонент которого настроена в резонанс с переходом $|F = 2\rangle \rightarrow |F' = 2\rangle$, а другая — в резонанс с переходом $|F = 1\rangle \rightarrow |F' = 1\rangle$ (D_1 — линия, рис. 1, b). В этом случае индуцированных переходов с рабочих уровней $|F = 1, m = 0\rangle$ и $|F = 2, m = 0\rangle$ не будет, так как равны нулю коэффициент Клебша-Гордана C_{1010}^{10}

и C_{2010}^{20} , входящие в соответствующие матричные элементы оператора дипольного момента. В результате, благодаря спонтанным переходам и переходам, индуцированным полем накачки, все атомы будут аккумулироваться на рабочих подуровнях $|1\rangle$ и $|2\rangle$. Отметим также, что компоненты поля накачки могут быть некоррелированными.

Если теперь включить слабое (по сравнению с полем накачки) двухкомпонентное σ^+ -поляризованное поле (пробное поле, рис. 1, *a*)

$$\mathbf{E}_{probe} = \frac{\mathbf{e}_{+1}}{2} \Big(E_1 \exp\left[i(k_1 z - \omega_1 t)\right] + E_2 \exp\left[i(k_2 z - \omega_2 t)\right] \Big) + c.c.$$

где

$$\mathbf{e}_{+1} = -\frac{1}{\sqrt{2}} \left(\mathbf{e}_x + i \mathbf{e}_y \right),$$

настроенное в резонанс с переходами с основного состояния на возбужденное состояние с J' = 3/2 (рис. 1, *b*), и сканировать разность частот вблизи частоты Δ_{hfs} , то будет наблюдаться темный резонанс, имеющий существенно большие амплитуду и контраст, чем в отсутствие накачки. Это обеспечивается тем, что в нашем случае все атомы находятся на рабочих подуровнях.

Нами проведены численные расчеты параметров темного резонанса для атомов ⁸⁷Rb в ячейке с буферным газом (10 Torr), находящейся при комнатной температуре. При этом учитывалась реальная сверхтонкая и зеемановская структуры энергетических уровней, а также эффекты оптической накачки, обусловленные радиационной релаксацией. Также было учтено, что из-за доплеровского уширения отсутствует спектральное разрешение сверхтонких компонент второго возбужденного состояния $|J' = 3/2\rangle$ (рис. 1, *b*).

В результате расчетов получены значения амплитуды A, контраста C, ширины Γ_s и крутизны S в зависимости от интенсивности I_P пробного поля, представленные на рис. 2. Для сравнения здесь же приведены результаты вычисления тех же параметров для циркулярно поляризованного поля на D_1 -линии без оптической накачки. Видно, что использование неколлинеарной оптической накачки ведет к существенному увеличению контраста (до 32% вместо 12% для σ^+), амплитуды и крутизны темного резонанса.

Расчеты для неколлинеарной оптической накачки соответствуют случаю, когда компоненты пробного поля настроены вблизи резонанса с переходами между уровнями $|F = 1, J = 1/2\rangle \rightarrow |F' = 2, J' = 3/2\rangle$

Рис. 2. Зависимость амплитуды (*a*), контраста (*b*), ширины (*c*) и крутизны (*d*) темного резонанса от интенсивности пробного поля. Сплошная линия соответствует схеме с неколлинеарной пробному полю лазерной накачкой интенсивностью $I_0 = 20 \text{ mW/cm}^2$ (при этом на рабочих подуровнях находится не менее 90% атомов), пунктирная линия — взаимодействие атомной системы с σ^+ -поляризованной пробной волной на D_1 -линии без оптической накачки.

Из графиков видно, что максимальная крутизна достигается при интенсивности I_P пробного поля, равной 0.01 mW/cm², и слабо меняется при изменении I_P в пределах 0.005–0.015 mW/cm². При дальнейшем увеличении I_P начинается резкий рост ширины Γ_s сигнала при умеренном росте контраста, а при уменьшении интенсивности практически прекращается уменьшение ширины, которая тогда в основном определяется величиной Γ .

Расчет по формулам из [7,8] кратковременной стабильности σ_y квантового стандарта частоты, основанного на предложенной схеме, показывает, что в ячейке объемом около $10 \,\mathrm{cm}^3$ при оптимальной крутизне $\sigma_y \leq 10^{-13}/\sqrt{\tau}$.

Данное исследование поддержано грантом INTAS-CNES 03-53-5175 и грантом Министерства образования и науки РФ УР.01.01.287.

Список литературы

- [1] Агапьев Б.Д., Горный М.Б., Матисов Б.Г. и др. // УФН. 1993. Т. 163. В. 9. С. 1–36.
- [2] Kitching J., Knappe S., Vukicevic N. et al. // IEEE Trans. Instrum. Meas. 2000.
 V. 49. P. 1313–1317.
- [3] Merimaa M., Lindvall T., Tittonen I. et al. // JOSA. 2003. V. 20. P. 273-279.
- [4] Тайченачев А.В., Юдин В.И., Величанский В.Л. и др. // Письма в ЖЭТФ. 2004. Т. 80. В. 4. С. 265–270.
- [5] Горный М.Б., Матисов Б.Г. // Радиотехника и электроника. 1983. Т. 28. В. 9. С. 1783–1787.
- [6] Горный М.Б., Матисов Б.Г. // ЖТФ. 1984. Т. 54. В. 10. С. 1881–1889.
- [7] Горный М.Б., Матисов Б.Г., Смирнова Г.М. и др. // ЖТФ. 1987. Т. 57. В. 4. С. 740–746.
- [8] Vanier J., Audoin C. The Quantum Physics of Atomic Frequency Standards. Adam Hilger, Bristol, UK, 1989. 1567 c.
- [9] Kargapoltsev S.V., Kitching J., Hollberg L. et al. // Laser Phys. Lett. 2004. V. 1. N 10. P. 495–499.