Релаксация доменной структуры в кристалле ТГС, стимулированная переменным электрическим полем

© О.М. Голицына, С.Н. Дрождин

06

Воронежский государственный университет, Воронеж, Россия E-mail: golitsynaom@yandex.ru

(Поступила в Редакцию 25 мая 2010 г.)

Исследованы процессы релаксации доменной структуры в кристалле триглицинсульфата, неравновесное состояние которой создавалось действием переменного электрического поля. Получены распределения энергии активации рассматриваемых процессов и энергии взаимодействия доменных стенок с дефектами по величине возбуждающего поля.

Исследованию релаксационного поведения сегнетоэлектрических кристаллов группы триглицинсульфата (ТГС), стимулированного внешними воздействиями, посвящено огромное число экспериментальных работ, но лишь в одной из них [1] изучалась релаксация, вызванная переменным электрическим полем. Вместе с тем именно в сильном переменном электрическом поле кристаллы ТГС демонстрируют необычное нелинейнодинамическое поведение [2], исчерпывающее объяснение которого отсутствует и может быть связано с особенностями релаксационного отклика доменной структуры кристалла на воздействие такого поля [3].

Учитывая тот факт, что из-за влияния дефектов обширный экспериментальный материал, посвященный вопросам релаксационной динамики доменной структуры, не дает картины для реальных кристаллов даже одного структурного типа, нами в настоящей работе были предприняты экспериментальные исследования процессов релаксации доменной структуры в ТГС, стимулированных внешним синусоидальным электрическим полем.

Ралаксационные процессы изучались в температурном интервале от 21 до 49°C по временным зависимостям диэлектрической проницаемости є, измеренной с помощью моста Tesla BM 484 в слабом измерительном поле 3 V/cm на частоте 1.592 kHz. Температура измерялась с точностью 0.01 К медным термометром сопротивления при помощи потенциометра Р-363. Исследовались образцы полярного У-среза номинально чистого ТГС с напыленными в вакууме серебрянными электродами. Перед измерениями все образцы хранились в одинаковых условиях никаким внешним воздействием. Переменное электрическое поле E_{\sim} частотой f = 50-5000 Hz и амплитудой от 0.5 до $2.0E_C$ (где E_C — коэрцитивное поле, определяющееся по петлям диэлектрического гистерезиса) подавалось на образец в течение 10 min. Сразу после выключения поля E_{\sim} измерялись временные зависимости емкости С образца. Измерения заканчивались, когда изменения емкости составляли не более 1% от начального значения.

На рис. 1 представлены типичные временные зависимости диэлектрической проницаемости $\varepsilon(t)$, из которых видно, что во всем исследованном временном интервале экспериментальные кривые являются монотонно спадающими и носят типичный релаксационный характер.

Согласно [1,4], выдержка кристалла в сильном переменном электрическом поле приводит к освобождению части доменных стенок от закрепляющих их дефектов, что в целом делает доменную структуру кристалла более подвижной, а вклад осцилляций доменных стенок в величину ε сразу после выключения поля — значительным. Со временем постепенно происходит повторное закрепление свободных стенок на дефектах, что и приводит к наблюдаемому уменьшению ε (рис. 1).

Экспериментальные зависимости ε от времени аппроксимировались функцией

$$\varepsilon(t) = \varepsilon_{\infty} + (\varepsilon_{\max} - \varepsilon_{\infty}) \exp\left(-\frac{t}{\tau}\right),$$
 (1)

где ε_{\max} и ε_{∞} — начальное (в момент времени t = 0) и конечное значения ε , τ — время релакса-

Рис. 1. Временны́е зависимости диэлектрической проницаемости ε после переполяризации кристалла ТГС в поле $E_{\sim} = 0.5E_C$, f = 500 Hz. T = 35 (1) и 43°C (2).

ции. Построение зависимостей от времени величины $\ln[(\varepsilon_{\max} - \varepsilon_{\infty})/(\varepsilon_t - \varepsilon_{\infty})]$, где ε_t — экспериментально измеренные значения ε в момент времени t, показало, что в рассматриваемом интервале температур эти зависимости являются линейными (рис. 2), что подтверждает правильность выбора аппроксимирующей функции.

Наличие одного линейного участка на зависимостях 1 и 2 рис. 2 показывает, что релаксация доменной структруы кристалла ТГС, вызванная переменным полем, описывается одним характреным временем τ в отличие от релаксации, стимулированной постоянным электрическим полем [5,6], при которой спадающие участки кривых $\varepsilon(t)$ характеризуются несколькими временами релаксации, отвечающими разным этапам эволюции доменной структуры к новому равновесному состоянию.

Температурные зависимости $\tau(T)$, представленные на рис. 3, немонотонны: наблюдаются максимумы, приходящиеся на температуры, отстоящие от точки фазового

Рис. 2. Экспериментальные зависимости от времени величины $\ln[(\varepsilon_{\max} - \varepsilon_{\infty})/(\varepsilon_t - \varepsilon_{\infty})]$ для кристалла ТГС. T = 35 (1) и 43°C (2). $E_{\sim} = 0.5E_C$, f = 500 Hz.

Рис. 3. Температурные зависимости τ для кристалла ТГС. $E_{\sim} = 0.5E_C$ (1) и 2.0 E_C (2). f = 500 Hz.

Рис. 4. Зависимость времени релаксации τ от поля E_{\sim} . f = 500 Hz, $T = 45^{\circ}$ C.

перехода примерно на 14 и 6°С, что, вероятно, связано с самопроизвольными перестройками доменной структуры [5]. При приближении к точке фазового перехода величина времени релаксации уменьшается, что качественно согласуется с результатами других работ [7,8].

Увеличение амплитуды возбуждающего поля E_{\sim} не влияет на качественный характер зависимостей $\tau(T)$, но приводит к росту абсолютных значений τ (рис. 4), что согласуется с результатами работы [9]. Ранее аналогичная полевая зависимость τ была получена для кристалла ТГС при изучении релаксации в постоянном поле методом деполяризации [8].

Существенное влияние на процессы релаксации доменной структуры оказывают точечные дефекты [10]. Дефекты могут являться источниками сил сухого трения для закрепленных на них доменных стенок, а также "атмосфера" дефектов создает силы вязкого трения, действующие на доменные стенки, освобожденные полем E_{\sim} от дефектов-стопоров и движущиеся сквозь эту "атмосферу" к новым положениям равновесия [11].

Согласно данным работы [1], релаксационное движение свободных от дефектов доменных стенок можно наблюдать уже после воздействия "слабого" поля $(E_{\sim} = 0.3 - 0.4 E_C)$. При этом наличие одного времени релаксации т, по-видимому, свидетельствует в пользу доминирования второго из предложенных в [11] механизмов релаксационного движения доменных стенок. Вероятно, когда поле $E_{\sim} < E_C$, боковое движение доменных стенок после его выключения [12] происходит таким образом, что они претерпевают резкое торможение при встрече с неравновесными точечными дефектами. Ранее при изучении кинетики процессов переполяризации в кристаллах ТГС было установлено, что с ростом поля Е~ увеличиваются подвижность доменных стенок [4,11], скорость их бокового движения и концентрация зародышей доменов [13], достигая максимальных значений в полях $E_{\sim} \sim E_C$. Следует заметить, что эволюция образовавшихся зародышей доменов в полях раз-

Рис. 5. Зависимость энергии активации W процессов релаксации доменной структуры от поля E_{\sim} . f, Hz: I - 500, 2 - 1000. Интервал температур 42–48°С.

ной величины качественно различна после выключения этих полей: при $E_{\sim} < E_C$ зародыши доменов исчезают практически моментально; когда $E_{\sim} \sim E_C$, зародыши доменов прорастают сквозь толщу образца, а наиболее интенсивное их развитие, сопровождаемое начальной стадией бокового движения их границ, наблюдается при $E_{\sim} > E_C$ [4,13]. Можно ожидать, что после снятия поля $E_{\sim} \sim E_C$ проросшие зародыши доменов как дополнительные осцилляторы (релаксаторы) будут участвовать в рассматриваемых процессах, увеличивая длительность τ релаксационного процесса. При этом изменится и характер движения доменных стенок: существенно замедляясь под действием сил вязкого трения в среде неравновесных дефектов и взаимодействуя с последними, доменные стенки вместе с дефектами-стопорами продолжают замедленное движение к равновесным позициям. В совокупности эти факторы, вероятно, и приводят к росту времени τ . В случае $E_{\sim} > E_C$ в динамику релаксационного процесса вносит свой вклад взаимодействие (отталкивание) доменных стенок, что приводит к уменьшению скорости их бокового движения [13], и, как следствие, к незначительному возрастанию т.

Релаксационные процессы, протекающие в "атмосфере" дефектов, взаимодействующих с доменными стенками, являются термоактивационными. Поэтому в температурном интервале $42-48^{\circ}$ С можно оценить значения энергий активации этих процессов W по формуле Аррениуса $\tau = \tau_0 \exp(W/kT)$. Рассчитанные в настоящей работе абсолютные значения энергии активации коррелируют с оценками W, проведенными в [4,14] на основе других экспериментальных методик. Как видно из рис. 5, распределение энергий активации W процессов релаксации доменной структуры по величине поля E_{\sim} является немонотонным: максимум в рассматриваемом распределении соответствует полю E_{\sim} , равному коэрцитивному полю образца.

Согласно [15], релаксационное изменение состояния доменной структуры кристалла ТГС во внешнем электрическом поле является термоактивационным процессом с широким спектром энергетических барьеров, созданных дефектами. В [16] при изучении полевых зависимостей эффективной диэлектрической проницаемости $\varepsilon_{\rm eff}(E_{\sim})$ кристаллов ТГС были получены распределения скорости изменения $d\varepsilon_{\rm eff}/dE_{\sim}$ по величине поля E_{\sim} . Зависимости $d\varepsilon_{\text{eff}}/dE_{\sim} = f(E_{\sim})$, согласно [16], отражают характер распределения энергии активации процесса циклической переполяризации по величине переполяризующего поля. Вид указанных кривых $d\varepsilon_{\rm eff}/dE_{\sim} = f(E_{\sim})$ качественно подобен зависимостям $W(E_{\sim})$, представленным на рис. 5, которые, повидимому, вполне адекватно отражают распределение по величине поля значений энергии активации рассматриваемого процесса релаксации доменной структуры, а следовательно, и соответствующее распределение энергии взаимодействия доменных стенок с дефектами.

Согласно работе [17], энергия активации релаксационного процесса есть сумма энергии активации перескокового движения дефектов W_1 и энергии взаимодействия доменных стенок с дефектами W_0

$$W = W_1 + W_0.$$
 (2)

Расчет энергии взаимодействия доменных стенок с дефектами в кристалле ТГС по зависимостям $\varepsilon_{\text{eff}}(E_{\sim})$ [18] в рамках модели [19] дал значения $W_0 = 10^{-2}$ eV, что на порядок меньше приведенных на рис. 5 значений энергии активации W. Тогда, согласно (2), энергии W_1 имеют значения порядка 10^{-1} eV, которые хорошо коррелируют с рассчитанными в [20] значениями энергии активации необратимого движения дефектов в неполярной фазе дейтерированного кристалла ТГС.

Список литературы

- [1] Б.Н. Прасолов, И.А. Сафонова. Изв. РАН. Сер. физ. **59**, *9*, 69 (1995).
- [2] S.N. Drozhdin, L.N. Kamysheva, O.M. Golitsyna. Ferroelectrics 175, 119 (1996).
- [3] M. Diestelhorst. Ferroelectrics **316**, 67 (2005).
- [4] Л.И. Донцова, Н.А. Тихомирова, Л.А. Шувалов. Кристаллография 39, 1, 158 (1994).
- [5] С.Н. Дрождин, О.М. Голицына, А.И. Никишина, Ф.А. Тума, Д.П. Тарасов. ФТТ 48, 3, 497 (2006).
- [6] О.М. Голицына, Л.Н. Камышева, С.Н. Дрождин. ФТТ 40, 1, 116 (1998).
- [7] С.Д. Миловидова, А.С. Сидоркин, А.М. Саввинов, А.И. Маслаков. ФТТ 28, 8, 2541 (1986).
- [8] Л.Н. Камышева, О.М. Голицына, С.Н. Дрождин. В сб.: Вестн. ВГТУ. Сер. Материаловедение. ВГТУ Воронеж (1996). С. 96.
- [9] W. Osak, K. Tkacz-Śmiech. Appl. Phys. A 65, 439 (1997).
- [10] S. Shin, J. Back, J.W. Hong, Z.G. Khim. J. Appl. Phys. 96, 8, 4372 (2004).

- [11] В.Н. Нечаев, А.М. Рощупкин. Изв. РАН, Сер. физ. **59**, *9*, 11 (1995).
- [12] А.А. Согр, В.З. Бородин. Изв. АН СССР. Сер. физ. 48, 6, 1086 (1984).
- [13] Л.И. Донцова, Л.Г. Булатова, Э.С. Попов, А.В. Шильников, А.А. Чеботарев, Н.А. Тихомирова, А.И. Баранов, Л.А. Шувалов. Кристаллография 27, 2, 305 (1982).
- [14] B. Hilcher, M. Michalczyk. Ferroelectrics 22, 721 (1978).
- [15] В. Гладкий, В.А. Кириков, Е.С. Иванова. ФТТ **39**, *2*, 353 (1997).
- [16] О.М. Голицына. С.Н. Дрождин. ФТТ **52**, *1*, 129 (2010).
- [17] Л.Н. Камышева, А.С. Сидоркин, И.Н. Зиновьева. Изв. АН СССР. Сер. физ. **48**, *6*, 1057 (1984).
- [18] С.Н. Дрождин, С.В. Хоник, В.Е. Денисова. ФТТ 48, 6, 1075 (2006).
- [19] С.А. Гриднев, Б.М. Даринский, В.С. Постников. Механизмы релаксационных явлений в твердых телах. Наука, М. (1972). С. 206.
- [20] А.В. Шильников, Л.А. Шувалов, В.А. Федорихин, А.П. Поздняков, А.В. Сопит. ФТТ **41**, *6*, 1073 (1999).