05 Динамические особенности кинетики фотопластического эффекта в стеклообразных полупроводниках

© М.Л. Трунов, С.Н. Дуб, Р.С. Шмегера

Ужгородский национальный университет, Украина Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, Киев E-mail: stm@tn.uz.ua

В окончательной редакции 3 марта 2005 г.

Методом наноиндентирования пленок стеклообразных полупроводников впервые исследована их фотоиндуцированная пластичность на наномасштабном уровне. Показано, что возрастание модуля Юнга и уменьшение нанотвердости на начальном этапе облучения пленок светом из области края собственного поглощения является характерной динамической особенностью кинетики их фотомеханического отклика. Обнаружен эффект последействия света, заключающийся в том, что сразу после прекращения облучения состояние размягчения пленки (по сравнению с исходным, темновым состоянием) сохраняется некоторое время, длительность которого зависит от условий облучения.

Ранее методом микроиндентирования исследована эволюция пластических свойств стеклообразных полупроводников при облучении светом из области края фундаментального поглощения [1,2]. Показано, что в халькогенидных стеклах системы As—Se наблюдается отрицательный фотопластический эффект (атермическое размягчение), который является обратимым по отношению к циклам включение—выключение света. Этот эффект может быть использован в устройствах высокоплотной записи информации, основанных на локальном деформировании материала носителя путем освещения и одновременного приложения к его поверхности механической нагрузки. Такой принцип записи, который можно назвать фотомеханическим, обладает потенциально более высокими техническими характеристиками и свободен от ряда недостатков, присущих термомеханическому способу, в котором для размягчения материала носителя используется термический нагрев [3].

31

Для разработки фотомеханического способа записи необходимо знание динамических характеристик механического отклика материалов на наномасштабном уровне на локальное приложение нагрузки и световое воздействие. Возможности метода микроиндентирования в этом плане сильно ограничены, поскольку не обеспечивается проведение исследований в нужном временном ($\sim 0.1-1$ s) и пространственном масштабе (10–100 nm).

Исследовать динамику внедрения индентора in situ при локальном прецизионном силовом воздействии на исследуемую поверхность с непрерывной регистрацией глубины отпечатка во времени и исследовать кинетику его упругого и вязкоупругого восстановления после снятия нагрузки позволяют современные нанотвердомеры. В данном письме представлены результаты исследования кинетики фотопластического эффекта в стеклообразных полупроводниках методом наноиндентирования в условиях быстрого нагружения острым индентором, пластического течения материала при заданной нагрузке и последующего восстановления отпечатка при быстрой разгрузке образца.

В качестве объектов испытаний были выбраны пленки, полученные термическим испарением халькогенидного стекла стехиометрического состава As₂Se₃ на подложку из стекла K-8. Толщина пленок контролировалась в процессе напыления и составляла 2μ m. Для уменьшения влияния релаксационных процессов при стабилизации структуры свеженапыленные пленки выдерживались в темноте на протяжении 3 месяцев. Облучение проводилось твердотельным лазером длиной волны 650 nm, энергия излучения которого (E = 1.90 eV) близка к ширине запрещенной зоны исследуемых пленок ($E_g = 1.78 \text{ eV}$ при поглощении $\alpha = 10^3 \text{ cm}^{-1}$), а мощность излучения не превышала 20 mW/cm².

Исследования проведены на нанотвердомере Nanoindenter II, MTS Systems индентором Берковича (трехгранная алмазная пирамида с углом при вершине 65.3° и радиусом закругления около 200 nm). Основные характеристики прибора и методика испытаний на нанотвердость приведены в [4,5]. Нанотвердость (H) и модуль Юнга (E) определялись прибором методом Оливера—Фара [6] по глубине отпечатка, на основе получаемой в процессе испытаний диаграммы внедрения индентора. Для набора статистики и оценки воспроизводимости результатов испытания проводились на пяти образцах, полученных в одном цикле напыления. Погрешность измерений в наших экспериментах не превышала 0.01 GPa для нанотвердости и 0.5 GPa для модуля Юнга.

Испытания проводились методом циклического индентирования [1], т.е. во время эксперимента проводилось несколько уколов (циклов испытания) образца при одних и тех же параметрах испытаний и боковом смещении индентора после каждого цикла. Таким образом, новый цикл испытаний проводился на следующем участке пленки. Расстояние между участками составляло $25 \pm 0.5 \,\mu$ m, т.е. общая площадь испытуемого участка была намного меньше площади лазерного пятна. Всего на каждом образце было проведено восемь циклов испытаний: два в темноте (соответственно до и после засветки) и шесть при облучении светом, а также три цикла испытаний после выдержки облученной пленки в течение 24 h. Время между циклами составляло от 3 до 6 min и определялось временем поиска поверхности пленки индентором перед каждым испытанием. Каждый цикл испытаний состоял из четырех временны́х сегментов: сегмента нагрузки (2 s); сегмента выдержки индентора при максимальной нагрузке (120 s); сегмента разгрузки до нуля (2 s) и сегмента вязкого восстановления отпечатка (120 s) (схема испытаний приведена на рис. 1, кривая 1). Максимальная нагрузка в каждом цикле была одинаковой и составляла 2 mN.

В отличие от традиционного при наноиндентировании способа представления результатов в виде P-h диаграмм [4] (где P — нагрузка на индентор, h — глубина внедрения индентора), мы использовали более наглядное для нашей методики испытаний представление в виде h-t диаграмм (где t — время испытания). Из этих диаграмм определялись глубина невосстановленного h_t отпечатка и все компоненты деформации пленки в цикле испытаний: упругая h_e , пластическая h_p и вязкая h_r (рис. 1, кривая 3).

На рис. 1 приведены характерные экспериментальные кривые, полученные при наноиндентировании пленки As_2Se_3 в темноте (кривая 2), во время первого облучения (кривые 3 и 4 соответственно, первый и третий цикл испытаний при облучении), после выдержки облученной пленки в темноте в течение 24 h (кривая 5) и повторного облучения (кривая 6). Кривая 7 снята сразу после прекращения повторной засветки и описывает механический отклик пленки на следующую последовательность действий: 1) индентирование начато в темноте; 2) на 60-й s в сегменте выдержки пленки под нагрузкой включен свет и через 30 s облучения выключен; 3) аналогичная процедура проведена после снятия нагрузки в процессе темнового вязкого восстановления отпечатка (соответствующие моменты включения и выключения света

Рис. 1. Зависимости глубины погружения индентора от времени при наноиндентировании пленок As₂Se₃ толщиной 2 μ m: в темноте (2, 5), при непрерывном облучении светом (3–4, 6), при включении света на разных этапах наноиндентирования (7). 1 — схема приложения нагрузки в процессе испытаний. Стрелками показаны моменты включения (\uparrow) и выключения (\downarrow) света для 7. См. пояснения в тексте.

для кривой 7 показаны стрелками). Основные параметры механического отклика пленки на внешнее воздействие и их относительные изменения для указанных выше кривых приведены в таблице (где $\Delta H = H - H_0$

Параметры механического отклика пленки As_2Se_3 толщиной $2\mu m$ при наноиндентировании и их изменение в процессе облучения

H, GPa	E, GPa	K, GPa	$\Delta H/H_0,\%$	$\Delta E/E_0,\%$	Комментарии
Для свеженапыленных пленок после стабилизации структуры в течение 3 месяцев					
$1.00(H_0)$	$25.0(E_0)$	0.160	0	0	Темновой образец (2)
0.40	28.0	0.008	-60	+12	Облучение, первый цикл испытаний (3)
0.50	25.0	0.020	-50	0	Облучение, третий цикл испытаний (4)
Для облученных пленок после выдержки в темноте в течение 24 h					
$1.44(H_0)$	31.5 (<i>E</i> ₀)	0.30	0	0	Темновой образец, через 24 h после облучения (5)
0.92	33.0	0.07	-36	+4	Повторное облучение (6)
1.02	29.0	0.12	-29	-8	Темновой образец, сразу после повторного облучения (7)

и $\Delta E = E - E_0$, $K = (H^3/E^2) \cdot 10^2$, а номер соответствующих данным параметрам кривых рис. 1 указан в скобках в столбце "Комментарии").

Из полученных данных видно, что глубина погружения индентора при наноиндентировании пленки в темноте слабо меняется в процессе выдержки индентора под нагрузкой как до, так и после облучения, а восстановление отпечатка определяется в основном упругой составляющей h_e в момент быстрой разгрузки (рис. 1, кривая 2).

При облучении картина меняется и подобна той, которая наблюдалась ранее при микроиндентировании [1,2]: в первом цикле испытаний при облучении наблюдается резкий рост глубины погружения индентора в сегменте выдержки пленки под нагрузкой (кривая 3), в третьем цикле — скорость погружения индентора уменьшается (кривая 4). Статистическая оценка полученных при испытаниях результатов позволяет утверждать, что указанное различие в поведении кривых 3 и 4 выходит за пределы естественного разброса из-за возможной

локальной механической неоднородности разных участков исследуемых пленок и свидетельствует о том, что это различие отражает эволюцию пластических свойств пленки при ее облучении светом.

Наблюдается существенное перераспределение упругой h_e и вязкой h_r компонент восстановления отпечатка при снятии нагрузки. Видно, что вязкая компонента восстановления отпечатка h_r при облучении существенно выше, чем в темноте по абсолютной величине, что однозначно свидетельствует о существенном размораживании кинетической подвижности молекулярных единиц в стекле при облучении светом и в целом о вынужденной, стимулированной светом релаксации структуры стекла.

Оценка сопротивления материала пленки пластической деформации, проведенная по параметру $K = H^3/E^2$ [7], показывает, что на начальном этапе засветки пленка в 20 раз пластичнее по сравнению с темновым образцом. Обращает внимание тот факт, что на начальном этапе облучения модуль Юнга пленки возрастает, а нанотвердость падает более чем наполовину (см. таблицу), в то время как обычно эти две величины находятся в прямой корреляционной зависимости. Обсуждение этого факта выходит за рамки данного сообщения, отметим только, что он наблюдался на всех испытуемых образцах, в том числе и для пленок стеклообразных полупроводников других составов.

Обнаружен эффект последействия света, заключающийся в том, что сразу после прекращения процесса облучения в пленках наблюдается метастабильное состояние размягчения (рис. 1, кривая 7) по сравнению с исходным, темновым состоянием (рис. 1, кривая 5).¹ Время последействия определяется интенсивностью падающего излучения, длительностью процесса облучения и может составлять от нескольких секунд до десятков секунд.

Из полученных результатов следует, что практически все составляющие фотомеханического отклика пленки претерпевают немонотонные изменения во времени при облучении. Для примера, на рис. 2 представлены составляющие общей деформации h_t пленки (упругая h_e , пластическая h_p и вязкая h_r), модуль Юнга (E) и нанотвердость (H) для каждого из восьми циклов испытаний при первом облучении. Составляющие деформации определялись по кривой разгрузки индентора для

¹ В то же время выдержка в темноте в течение 24h предварительно облученных пленок приводит к их существенному упрочнению, т.е. возрастанию нанотвердости и модуля Юнга (см. таблицу).

Рис. 2. Динамика фотомеханического отклика пленки As₂Se₃ толщиной 2μ m на облучение светом: 1-3 — составляющие общей деформации пленки при наноиндентировании: пластическая h_p (1), упругая h_e (2) и вязкая h_r (3). Кривые 4 и 5 — изменения нанотвердости (H) и модуля Юнга пленки (E) соответственно. Участок, выделенный штриховкой, показывает изменение вклада пластической и упругой составляющих при облучении. Стрелками показаны моменты включения (\uparrow) и выключения (\downarrow) света.

каждого цикла испытания (см. пример для кривой *3* на рис. 1). Такая методика обработки результатов аналогична методике, используемой при испытании материалов в режиме релаксации деформации [8].

Из кривых на рис. 2 видно, что относительные вклады этих составляющих в общую деформацию, а также динамика их изменений различны. При облучении светом (момент включения показан стрелкой) существенно возрастает доля пластической деформации (кривая 1) и уменьшается вклад упругой составляющей (кривой 2), одновременно появляется значительная релаксационная составляющая (кривая 3). Динамические изменения наблюдаются также для модуля Юнга (5) и нанотвердости (4) пленки. Это свидетельствует о том, что структура

пленки непрерывно меняется как в процессе облучения, так и при прекращении засветки, причем максимальные изменения приходятся на начальный этап облучения светом (300 s для указанных выше параметров облучения).

Таким образом, в настоящем письме методом наноиндентирования впервые проведено исследование динамических особенностей всех упругопластических составляющих механического отклика пленок стеклообразных полупроводников на облучение светом: получены количественные данные об их соотношениях и зависимости исследуемых величин от времени облучения.

Список литературы

- [1] Трунов М.Л. // Письма в ЖТФ. 2004. Т. 30. В. 20. С. 49-54.
- [2] Trunov M.L., Bilanich V.S. // Thin Solid Films. 2004. V. 459. N 5. P. 228-232.
- [3] *Vettiger P., Despont M., Drechsler U.* et al. // IBM J. Res. Develop. 2000. V. 44. N 3. P. 323–340.
- [4] Olson N.G., Leung C., Wang X. // Experimental Techniques. 2002. V. 12. P. 51– 56.
- [5] Дуб С.Н. // Сб. докл. 9-го Международного симпозиума "Тонкие пленки в оптике и электронике". Харьков, Украина, 21–25 апреля 2003 г. ННЦ ХФТИ "Константа", 2003. С. 343–349.
- [6] Oliver W.C., Pharr G.M. // J. Mater. Res. 1992. V. 7. N 6. P. 1564–1583.
- [7] Leyland A., Matthews A. // Wear. 2000. V. 246. N 1–2. P. 1–11.
- [8] Релаксационные явления в твердых телах / Под ред. В.С. Постникова. М.: Металлургия, 1968. 694 с.