01;04 Теория импульсно-периодического излучающего разряда высокого давления в цезии

© Ф.Г. Бакшт, В.Ф. Лапшин

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: baksht@mail.ioffe.ru

Поступило в Редакцию 27 июля 2004 г.

Выполнено самосогласованное моделирование импульсно-периодического разряда в цезии. Показано, что исследованный разряд является эффективным источником света с непрерывным спектром излучения и световой отдачей $\eta_V = 74 \text{ lm/W}$. В условиях, когда оптическая толщина плазмы в большей части спектра близка к единице, основными механизмами переноса энергии в объеме разряда являются нелокальный теплообмен излучением и радиационная теплопроводность.

1. Введение. Слаботочный импульсный разряд широко используется в светотехнике. При малых скоростях нарастания тока $(dI/dt < 10^8 \text{ A/s})$ расширение токового канала происходит с дозвуковыми скоростями. Исследованию таких разрядов посвящено значительное число работ [1-10]. В них, однако, рассматривались режимы горения разряда, в которых плазма оптически прозрачна для непрерывного излучения. В [11,12] было показано, что плазма импульсно-периодического разряда (ИПР) в цезии при давлении $p \sim 1$ atm имеет оптическую толщину в континууме порядка единицы. Для качественного анализа спектра разряда в этих работах рассматривался неподвижный столб цезиевой плазмы (однородный по температуре в [11] и с модельным радиальным профилем температуры в [12]). В настоящем сообщении впервые рассчитана газодинамика ИПР в цезии и показано, что в таком разряде, при определенном выборе его параметров, может быть в действительности получена плазма с требуемыми оптическими свойствами. Рассчитан спектр цезиевого разряда и показана возможность его использования для получения почти непрерывного спектра видимого излучения с высокой световой отдачей.

70

2. Модель разряда. Рассматривается разряд в керамической трубке из Al₂O₃ с внутренним радиусом $R \sim 1.5 \div 4$ mm. При этом через плазму дежурного разряда, поддерживаемого током $I_{st} \sim 0.1 \div 1.0$ А, периодически, с частотой $\nu \sim 500 \div 2000$ Hz, пропускается импульс тока с амплитудой $I_{\rm max} \sim 30 \div 200$ А. Коэффициент заполнения цикла составляет $k \sim 0.04 \div 0.1$. В этих условиях температура на оси разряда достигает 6000 \div 7000 K и концентрация плазмы $n_e \sim 10^{17} \div 10^{18}$ cm⁻³.

В рассматриваемых условиях плазма ИПР обладает аксиальной симметрией, находится в состоянии локального термодинамического равновесия [12] и для ее исследования используется система уравнений:

$$\frac{\partial}{\partial t}\left(n_{i}+n_{a}\right)+\frac{1}{r}\frac{\partial}{\partial r}\left[r\left(n_{a}V_{a}+n_{i}V_{i}\right)\right]=0,\tag{1}$$

$$\frac{\partial}{\partial r} p_a = n_a n_i R_{ai} (V_i - V_a), \qquad (2)$$

$$\frac{\partial}{\partial r}\left(p_e + p_i\right) = n_i n_a R_{ai} (V_a - V_i),\tag{3}$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} p + n_a E_a + n_i E_i \right) + \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \left[\frac{5}{2} (p_a V_a + p_i V_i + p_e V_e) + n_a V_a E_a + n_i V_i E_i \right] \right\} = \sigma_e E^2 + \frac{1}{r} \frac{\partial}{\partial r} r (\lambda_e + \lambda_a + \lambda_{rad}) \frac{\partial T}{\partial r} - U \equiv Q, \qquad (4)$$

$$I(t) = 2\pi E(t) \int_{0}^{R} \sigma_{e}(r) r dr.$$
 (5)

Здесь p_i , p_e , p_a и n_i , n_e , n_a — парциальные давления и концентрация ионов, электронов и атомов цезия; V_i , V_e , V_a — их радиальные гидродинамические скорости (предполагается, что радиальный ток на стенки отсутствует и $V_i = V_e$). Методика расчета коэффициента трения R_{ai} приведена в [9]; E_i и E_a — энергия ионизации и усредненная по распределению Больцмана энергия возбуждения атомов цезия, E — напряженность продольного электронная электропроводность, λ_e и λ_a — электронная и атомная теплопроводности. В расчетах для λ_e и σ_e использовались формулы Фроста для кинетических коэффициентов электронов в частично ионизованном газе; $\lambda_a(T) = (T/T_0)^{1/2}\lambda_0$, где

 λ_0 — теплопроводность нейтрального цезия при $T_0 = 1500$ К. Член с λ_{rad} учитывает выделение энергии в плазме в оптически плотной части спектра: по этой части спектра проводится интегрирование при вычислении радиационной теплопроводности [13]; $U = \frac{1}{r} \frac{\partial}{\partial r} (r \int F_{\lambda} d\lambda)$ — радиационные потери энергии плазмы в остальной части спетра. В расчетах рассматривался спектральный интервал 250 nm $< \lambda < 9000$ nm.

Радиальный поток радиационной энергии F_{λ} выражался через равновесную спектральную интенсивность излучения $I_{\lambda P} = 2hc^2\lambda^{-5}[\exp(hc/\lambda k_BT) - 1]^{-1}$:

$$F_{\lambda}(r,t) = 4 \int_{0}^{\pi/2} d\psi \cos \psi \int_{0}^{\pi} d\theta \cos \theta$$
$$\times \int_{0}^{l_{w}(r,\theta)} \kappa_{\lambda}(l) I_{\lambda P}(l) \exp\left(-\frac{1}{\cos \psi} \int_{0}^{l} \kappa_{\lambda}(l') dl'\right) dl.$$
(6)

Здесь $l_w = (R^2 - r^2 \sin^2 \theta)^{1/2} + r \cos \theta$. Методика вычислений и детали обозначений подробно описаны в [12].

В настоящей работе предполагается, что распределение температуры в стенке и количество цезия на единицу длины трубки C остаются постоянными в течение импульса. Стенка трубки считается прозрачной для излучения плазмы. В этом случае граничные условия для уравнений (1)-(4) имеют вид

$$\frac{\partial T}{\partial r}\Big|_{r=0} = 0, \qquad T\Big|_{r=R} = T_w, \qquad 2\pi \int_0^\kappa r(n_i + n_a)dr = C.$$
(7)

Температура внутренней поверхности трубки *T_w* определялась из решения стационарного уравнения теплопроводности для стенки трубки [9]:

$$T_w = \left[\frac{q_w}{\varepsilon_w \sigma_{S.B.}(1 + \Delta R/R)}\right]^{1/4} + q_w \frac{R}{\lambda_w} \ln\left(1 + \frac{\Delta R}{R}\right),$$

где

$$q_w = v \int_0^{1/\nu} \left(-\lambda_a \frac{\partial T}{\partial r} \right) \bigg|_{r=R} dt.$$

Здесь λ_w — теплопроводность стенки трубки, q_w — средний за период поток тепла из плазмы на стенку за счет атомной теплопроводности

Рис. 1. Зависимости от времени основных параметров разряда: I — давление $P(t)/P_{\text{max}}$; 2 — температура на оси разряда $T_0(t)/T_{0\text{ max}}$; 3 — напряженность электрического поля в плазме $E(t)/E_{\text{max}}$; 4 — форма импульса тока $I(t)/I_{\text{max}}$; 5 — доля энергии U_c/U_h , поглощаемая в холодной области.

(у стенки λ_e , $\lambda_{rad} \ll \lambda_a$), ε_w — коэффициент теплового излучения (интегральная степень черноты) внешней поверхности трубки, $\sigma_{S.B.}$ — постоянная Стефана—Больцмана, ΔR — толщина стенок.

3. Результаты вычислений и обсуждение. На рис. 1–3 приведены результаты расчетов для $I_{\text{max}} = 200 \text{ A}$, R = 4 mm, v = 1000 Hz, k = 1/22. Количество цезия на единицу длины трубки составляло $C = 2\pi P_{sat} \int_{0}^{R} \frac{rdr}{k_B T_{st}(r)} = 2.77 \cdot 10^{19} \text{ cm}^{-1}$, что соответствует давлению насыщенных паров $P_{sat} = 750 \text{ Torr y холодного конца трубки с температурой <math>T_{cold} = 940 \text{ K}$ ($T_{st}(r)$ — профиль температуры в дежурном разряде). На рис. 1 изображены в относительных единицах основные параметры разряда. Время отложено в единицах импульса t/t_p , $t_p = k/v$. Максимальные значения величин составляют $E_{\text{max}} = 378 \text{ V/cm}$, $P_{\text{max}} = 1475 \text{ Torr}$, $T_{0 \text{ max}} = 7080 \text{ K}$. Отметим здесь, что радиальные профили температуры имеют в исследуемом разряде существенно более

Рис. 2. Радиальное распределение температуры и объемные скорости энерговыделения в момент времени $t/t_p = 0.5$: $I - 10^{-3}T(r)$ K; $2 - \sigma E^2$; 3 - U; $4 - \frac{1}{r} \frac{\partial}{\partial r} r(\lambda_e + \lambda_a) \frac{\partial T}{\partial r}$; $5 - \frac{1}{r} \frac{\partial}{\partial r} r \lambda_{rad} \frac{\partial T}{\partial r}$; 6 - Q (суммарная скорость энерговыделения в единице объема).

пологий вид, чем в разрядах с оптически прозрачной в континууме плазмой [1,4,8,10]. Это объясняется тем, что поглощаемая в холодной плазме энергия U_c составляет значительную часть от энергии U_h , излучаемой горячей областью в континууме (рис. 1). Здесь $U_h = 2\pi \int_{0}^{r^*} rU(r)dr$, $U_c = -2\pi \int_{r^*}^{R} rU(r)dr$, где точка r^* определяется из условия $U(r^*) = 0$ (рис. 2). На рис. 2 сравниваются различные механизмы нагрева плазмы. Хорошо видно, что наибольший энерговклад Q происходит в области максимального градиента температуры (теплового фронта) $r/R \sim 0.45$. Это обусловлено тем, что в этой области дивергенция радиационного потока тепла максимальна. Разогрев холодной области (r/R > 0.55)обеспечивается главным образом за счет поглощения континуального рекомбинационного излучения (здесь U < 0). Формирование тепловой волны с резким температурным фронтом в таких условиях невоз-

Рис. 3. Усредненный по времени спектр выходящего из плазмы излучения.

можно. Другой важной особенностью исследованного разряда является практически непрерывный характер спектра его излучения. На рис. 3 приведен средний за период спектральный поток выходящего из плазмы излучения $F_{\rm rad}(\lambda) = \nu \int_{0}^{\nu^{-1}} F_{\lambda}(R, t) dt$. Спектр является практически непрерывным и перекрывает всю видимую область, что соответствует источнику света с высоким индексом цветопередачи. В работе рассчитан средний за период световой поток, испускаемый единицей длины 760 nm столба дуги, $\Phi = 2\pi R K_{\max}$ \int $F_{\rm rad}(\lambda) V(\lambda) d\lambda$, где $V(\lambda)$ — спектральная 380 nm световая эффективность излучения, $K_{\text{max}} = 683 \,\text{lm/W}$ — максимальное значение световой эффективности, которое достигается при $\lambda = 555$ nm. Для рассматриваемого режима величина светового потока составила $\Phi = 21600 \, \text{lm/cm}$ при средней за период потребляемой мощности P = 290 W/cm. Световая эффективность разряда составляет при этом $\eta_V = \Phi/P = 74 \,\mathrm{lm/W}.$

Таким образом, показано, что важными особенностями разряда являются преобладание в плазме радиационных механизмов переноса энергии и непрерывный спектр выходящего из плазмы излучения, сосредоточенного в видимой области. Полная световая эффективность цезиевого ИПР заметно превосходит эффективность существующих источников света с непрерывным спектром, особенно безртутных источников — ксеноновых ламп [14].

Список литературы

- [1] Chalek C.L., Kinsinger R.E. // J. Appl. Phys. 1981. V. 52. N 2. P. 716-723.
- [2] Stormberg H.P., Schäfer R. // J. Appl. Phys. 1983. V. 54. N 8. P. 4338-4347.
- [3] Dakin J.T., Rautenberg T.H. // J. Appl. Phys. 1984. V. 56. N 1. P. 118-124.
- [4] Азизов Э.А., Кобелевский А.В., Настоящий А.Ф. // Физика плазмы. 1986.
 Т. 12. В. 3. С. 362–369.
- [5] Ершов-Павлов Е.А., Чубрик Н.И., Шиманович В.Д. // ТВТ. 1988. Т. 26. № 1. С. 17–22.
- [6] Абрамов Ю.Ю., Азизов Э.А., Солодовников С.Г. // Физика плазмы. 1989.
 Т. 15. В. 1. С. 97–106.
- [7] Günter K., Kloss H.-G., Lehmann T., Radtke R., Serick F. // Contrib. Plasma Phys. 1990. V. 30. N 6. P. 715–724.
- [8] Аньшаков А.С., Назарук В.И., Хайтман С.М. // Теплофизика и аэродинамика. 1996. Т. З. № 1. С. 81–84.
- [9] Бакит Ф.Г., Лапшин В.Ф. // ЖТФ. 1996. Т. 66. В. 11. С. 170–176.
- [10] Бакшт Ф.Г., Лапшин В.Ф. // ЖТФ. 1997. Т. 67. В. 9. С. 22–24.
- [11] Бакшт Ф.Г., Лапшин В.Ф. // Письма в ЖТФ. 1997. Т. 23. В. 24. С. 40-45.
- [12] Бакшт Ф.Г., Лапшин В.Ф. // ЖТФ. 2002. Т. 72. В. 7. С. 100–105.
- [13] Бакшт Ф.Г., Лапшин В.Ф. // Материалы Всерос. научн. конф. по физике низкотемпературной плазмы ФНТП-2004. Петрозаводск, 28–30 июня 2004 г. Т. 1. С. 56–61.
- [14] Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга. М.: Энергоатомиздат, 1995. 526 с.