06 Влияние пространственной неоднородности толщины диэлектрика на вольт-амперные характеристики туннельных МОП-структур

© С.Э. Тягинов, М.И. Векслер, А.Ф. Шулекин, И.В. Грехов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: shulekin@pop.ioffe.rssi.ru

Поступило в Редакцию 29 июня 2004 г.

Проведено моделирование вольт-амперных характеристик (BAX) туннельных МОП-структур AlSiO₂/Si с учетом неоднородности распределения толщины диэлектрика по площади прибора. Обнаружена трансформация BAX при сильной дисперсии толщины. Определены значения дисперсии тока в широком диапазоне линейных размеров прибора. Результаты получены с привлечением наиболее современных данных о параметрах туннелирования и могут претендовать на количественную точность.

Для тонких МОП-структур (металл-окисел-полупроводник) важнейшей характеристикой окисла — помимо его номинальной толщины d_n — является среднеквадратичное отклонение толщины σ_d . Естественно ожидать, что σ_d будет порядка монослоя SiO₂ — 0.31 nm; в лучших промышленных образцах достигается $\sigma_d \sim 0.15$ nm [1]. При этом ясно, что локальная толщина окисла d не может меняться с координатой сколь угодно резко. Другими словами, заметные изменения d могут происходить на какой-то определенной длине λ , которую мы будем называть характерным пространственным масштабом неоднородности.

Этот масштаб может оказаться как меньше, так и больше линейных размеров образца *L*. Общие тенденции миниатюризации [2] приводят к тому, что ситуация $L \gg \lambda$ перестает быть единственно реализуемой.

В данной работе изучается влияние дисперсии толщины окисла на ВАХ структур Al/SiO₂(2.5-4.0 nm)/*n*-Si в широком диапазоне изменения отношения L/λ .

При расчете тока через прибор принималось, что толщина SiO2 подчиняется нормальному распределению ("обрезанному" при d < 0)

7

с параметрами $\langle d \rangle$ и σ_d , где $\langle d \rangle = d_n$. Ради простоты считалось, что d постоянно в пределах некоторой области, размер которой определяется длиной λ . При вычислениях вводилась квадратная сетка с шагом λ , которая случайным образом смещена относительно сторон прибора. Каждой ячейке $\lambda \times \lambda$ с центром в узле сетки ставилась в соответствие своя толщина d. Далее вычислялись локальные плотности тока¹ для ячеек [3–5] и средняя плотность тока через прибор I/S.

С помощью данной модели получены ВАХ, соответствующие профилям толщины окисла, полученным путем генерации выборок случайных величин d. В общем случае значение I/S при заданном напряжении варьируется от прибора к прибору. Этот разброс можно характеризовать среднеквадратичным отклонением $\sigma_{I/S}$ величины I/S от ее среднего значения $\langle I/S \rangle$.

Однако в пределе $L \gg \lambda$ происходит естественное усреднение локальных плотностей тока по площади. ВАХ таких структур, изготовленных в одном технологическом цикле, не должны иметь разброса, хотя каждый характеризуется своим профилем толщины SiO₂. Дисперсия тока, следовательно, будет ничтожно мала, а ток равен среднему значению, превосходящему ток через структуру с той же d_n и $\sigma_d = 0$. Для приборов с неоднородно распределенной толщиной диэлектрика в случае $L \gg \lambda$ иногда вводится эффективная толщина $d_{eff} \approx d_n - 0.5 \cdot \sigma_d^2$ (все величины берутся в ангстремах). Такая оценка получается, если грубо принять для локальной плотности тока $j \sim \exp(-\alpha \cdot d)$, где $\alpha = 2\hbar^{-1}(2m_{ox}\Phi)^{1/2}$, провести усреднение jс нормальным распределением толщины и положить $\Phi \sim 2.5 \text{ eV}$ для характерной средней высоты туннельного барьера. Подобный подход позволяет ориентировочно предсказать величину тока в туннельной МОП-структуре, обладающей $\sigma_d \neq 0$.

На рис. 1 приведены семейства ВАХ, соответствующие трем эффективным толщинам d_{eff} . При фиксированном σ_d значения d_n выбраны таким образом, чтобы соответствующие им d_{eff} (и грубо — токи) были одинаковы в рамках каждого семейства кривых. Видно, что форма характеристик структур с большой величиной σ_d заметно отличается от формы ВАХ приборов без дисперсии толщины. С наличием большой σ_d (и соответственно отклонением d_{eff} от d_n) может быть связан тот

¹ Использованы следующие параметры: $m_{z,Si}^e = 0.432$, $m_{\perp,Si}^e = 2.044$, $m_{ox} = 0.4$ [6] (все в единицах m_0), разрыв зоны проводимости Si/SiO₂ $\chi_e = 3.15 \,\text{eV}$, барьер Al/SiO₂ $\chi_m = 3.17 \,\text{eV}$, z — направление туннелирования.

Рис. 1. Вольт-амперные характеристики туннельных МОП структур большой площади с неоднородно распределенной толщиной окисла. Сплошные линии — расчет, символы — экспериментальные результаты для $d_n \approx 3.8$ nm и $\sigma_d \approx 0.5$ nm (кружки) и $d_n \approx 2.7$ nm, $\sigma_d \approx 0.3$ nm (треугольники).

факт, что взаимное расположение экспериментальных и теоретических кривых во многих случаях (например, в [7]) таково, что в области относительно малых напряжений экспериментальные имеют большие токи, а в области больших напряжений наоборот.

Рис. 1 дополнен двумя экспериментальными кривыми. Для измерений привлекались образцы двух типов: с относительно толстым диэлектриком, имеющим номинальную толщину $d_n \approx 3.8$ nm и $\sigma_d \approx 0.5$ nm (TEM-измерения), что обеспечивает $d_{eff} \approx 2.5$ nm, а также с $d_n \approx 2.7$ nm, $\sigma_d \approx 0.3$ nm и соответственно $d_{eff} \approx 2.3$ nm. Тонкий окисел был выращен в сухой смеси $O_2(20\%)$ и N₂ при температуре 700°С. Площадь прибора $S = 1.26 \cdot 10^{-3}$ сm². Видно, что кривая, соответствующая большей дисперсии, идет существенно более плавно.

Обсудим теперь другой предельный случай: $L \ll \lambda$. При таком соотношении размеров ВАХ сильно изменяются от прибора к прибору. Значение $\langle I/S \rangle$ будет таким же, как и в случае $L \gg \lambda$, поскольку не важно, на каком этапе производить усреднение: при суммировании токов, текущих через области, характеризующиеся локальной толщиной

Рис. 2. Зависимость дисперсии средней плотности тока от отношения линейных размеров прибора и масштаба пространственной неоднородности толщины окисла L/λ .

окисла d, или при статистическом анализе выборки приборов со случайным профилем толщин SiO₂. Таким образом, $\langle I/S \rangle$ постоянно во всем диапазоне значений отношения L/λ .

Величина $\sigma_{I/S}$, наоборот, сильно зависит от L/λ . Как уже говорилось выше, в случае $L \gg \lambda \sigma_{I/S}$ равна нулю, в то время как при $L \ll \lambda$ она принимает определенное значение, которое может быть получено численно. Когда характерный пространственный масштаб неоднородности намного больше размеров прибора, можно считать, что весь прибор имеет одну и ту же d, которая есть нормально распределенная случайная величина, а плотность тока I/S (при заданном напряжении) является функцией от этой величины. Аппарат теории вероятностей позволяет получить плотность вероятности I/S, а с ее помощью и дисперсию.

На рис. 2 приведены зависимости $\sigma_{I/S}$ от L/λ , охватывающие весь диапазон изменения данного отношения, для режима аккумуляции. При больших значениях L/λ дисперсия плотности тока стремится к нулю, а в области $L/\lambda \sim 1$ происходит переход величины $\sigma_{I/S}$ к другому стационарному значению, соответствующему пределу малых L/λ . Это последнее значение зависит от σ_d . Так, величины $\sigma_{I/S}$ (в пределе $L/\lambda \ll 1$), вычисленные для $\sigma_d = 0.2$ nm и $\sigma_d = 0.3$ nm, отличаются

почти на два порядка и соответственно примерно в 20 и 10^3 раз больше плотности тока при $d_n = 2.5$ nm и $\sigma_d = 0$.

Кроме того, видно, что с увеличением дисперсии толщины окисла увеличивается и ширина переходной области. Например, для $\sigma_d = 0.2 \text{ nm}$ резкий спад дисперсии тока начинается при $L/\lambda \sim 0.2$, в то время как для $\sigma_d = 0.1 \text{ nm}$ — при $L/\lambda \sim 1$.

Мы не располагаем собственными экспериментальными данными для ситуации $L \ll \lambda$, однако в работе [8] описывается значительный разброс тока для этого случая, приводящий к флуктуации порогового напряжения в полевых транзисторах.

Рассмотренная картина на качественном уровне выглядит достаточно очевидной и без расчетов, за исключением, может быть, трансформации ВАХ при больших σ_d . Как нам представляется, полученные результаты интересны именно с количественной точки зрения. Необходимые возможности для количественных расчетов появились сравнительно недавно, так как лишь в последнее время окончательно установились численные значения параметров для моделирования туннельных токов через SiO₂.

Авторы благодарны программе ФТНС, Программе президента РФ поддержки научных школ (грант НШ-758.2003.2), Фонду содействия отечественной науке, Фонду Дж. Сороса за финансовую поддержку.

Список литературы

- Momose H.S., Nakamura S., Ohguro T., Yoshitomi T., Morifuji E., Morimoto T., Katsumata Y., Iwai H. // IEEE Trans. Electron Devices. 1998. V. ED-45. N 3. P. 691–700.
- [2] SEMATECH. The International technology roadmap for semiconductors. http://public.itrs.net.home.htm, 2001.
- [3] Harrison W.A. // Phys. Rev. 1961. V. 123. N 1. P. 85-89.
- [4] Vexler M.I. // Solid-State Electron. 2003. V. 47. N 8. P. 1283-1287.
- [5] Asli N. Experimentelle Untersuchung der Elektrolumineszenz von MOS-Tunnelstrukturen. Ph. D. Dissertation, Kiel Univ., Germany, 2004. 156 p.
- [6] Houssa M., de Gendt S., de Bokx P., Mertens P.W., Heyns M.M. // Microelectron. Eng. 1999. V. 48. P. 43–46.
- [7] Khairurrijal, Mizubayashi M., Hirose M. // J. Appl. Phys. 2000. V. 87. N 6. P. 3000–3005.
- [8] Koh M., Iwamoto K., Mizubayashi W., Murakami H., Ono T., Tsuno M., Mihara T., Shibahara K., Yokoyama S., Miyazaki S., Miura M.M., Hirose M. // IEDM Tech. Dig. 1998. P. 919–922.