05,11

Структура, фазовые переходы, ЯМР ⁵⁵Мп и магниторезистивные свойства $La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}$

© А.В. Пащенко^{1,2}, В.П. Пащенко^{1,3}, А.Г. Сильчева⁴, В.К. Прокопенко¹, А.А. Шемяков¹, Ю.Ф. Ревенко¹, В.П. Комаров³. С.В. Горбань²

1 Донецкий физико-технический институт им. А.А. Галкина НАН Украины,

Донецк, Украина

² Донецкий национальный университет экономики и торговли им. М. Туган-Барановского,

Донецк, Украина

³ Донецкий научно-технологический центр «Реактивэлектрон» НАН Украины,

Донецк, Украина

⁴ Луганский национальный университет им. Тараса Шевченко,

Луганск, Украина

E-mail: alpash@mail.ru

(Поступила в Редакцию 22 апреля 2010 г.)

Рентгеновским, резистивным, магнитными (χ_{ac} , ЯМР ⁵⁵Mn) методами исследовали структуру и свойства лантан-стронциевых манганитоперовскитов La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3±δ} (y = 0-0.3), спеченных при 1430°С. Параметр ромбоэдрически искаженной ($R\bar{3}c$) перовскитной структуры уменьшается с ростом *y*. Реальная перовскитная структура содержит точечные (анионные, катионные вакансии) и наноструктурные дефекты кластерного типа.

Анализ асимметрично уширенных спектров ЯМР 55 Мп подтвердил высокочастотный электроннодырочный обмен Мп³⁺ \leftrightarrow Мп⁴⁺ и локальную неоднородность их окружения другими ионами и дефектами точечного и кластерного типа.

Повышение содержания Сг приводит к увеличению удельного сопротивления и магниторезистивного эффекта, уменьшению температур фазовых переходов металл-полупроводник T_{ms} и ферромагнетик-парамагнетик T_c вследствие нарушения обменных взаимодействий $Mn^{3+} \leftrightarrow Mn^{4+}$ ионами хрома, вакансиями и кластерами. Введение Сг уменьшает ферромагнитную составляющую и увеличивает энергию активации. Магниторезистивный эффект вблизи T_{ms} и T_c обусловлен рассеянием носителей заряда на внутрикристаллитных наноструктурных неоднородностях решетки, а низкотемпературный — туннелированием на мезоструктурных межкристаллитных границах.

1. Введение

Среди многочисленных редкоземельных манганитов и кобальтитов с дискуссионной природой колоссального магниторезистивного эффекта [1–4] наиболее перспективны допированные Sr [5–7] манганит-лантановые перовскиты, содержащие сверхстехиометрический марганец, который образует наноструктурные кластеры [8,9]. Для таких манганитоперовскитов характерны самые высокие температуры (360–370 K) фазовых переходов металл-полупроводник T_{ms} и ферромагнетик-парамагнетик T_c , вблизи которых наблюдается эффект. Сверх-стехиометрический марганец, образующий наноструктурные кластеры, повышает магниторезистивный эффект [10,11] без снижения температуры его проявления, что имеет важное практическое значение [12,13].

Большинство исследований выполнены на манганитоперовскитах без сверхстехиометрического марганца, допированных в *A*-подрешетке и *B*-подрешетке ионами Ca^{2+} , Sr^{2+} , Pb^{2+} , Ba^{2+} [14–17] и Fe, Co, Ni, Cu, Zn, Cr [18–21] соответственно. Недостаточное количество работ посвящено исследованиям допированных в *A*-подрешетке манганит-лантановых перовскитов со сверхстехиометрическим марганцем, в которых Mn замещен в *B*-позициях ионами переходных металлов Fe, Co [22,23]. Поэтому особый интерес представляет выяснение влияния замещения сверхстехиометрического марганца ближайшими к нему ионами (в частности, Cr) на структуру, фазовые переходы, нарушение обменных взаимодействий разновалентных ионов марганца и неоднородность их локальных состояний, магнитные и транспортные свойства кластеризованных манганитлантан-стронциевых перовскитов.

2. Объекты и методы исследований

Объектами исследований являлись керамические образцы, полученные из порошковых смесей La(OH)₃, SrCO₃, Mn₃O₄, Cr₂O₃ после двухстадийного синтеза при 900, 950°C и спекания прессовок при 1430°C в режиме медленного нагрева и охлаждения. Получены и исследованы образцы различных составов La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3± δ} (0 \leq y \leq 0.3).

При исследованиях использовали следующие методы: 1) рентгеноструктурный анализ на ДРОН-3 в Си-из-

лучении — для определения фазового состава образцов,

параметров перовскитовой структуры и рентгеновской плотности;

2) термогравиметрический — для контроля изменения содержания кислорода при спекании;

3) магнитный — для определения T_c и магнитных свойств из температурных и полевых зависимостей абсолютной дифференциальной магнитной восприимчивости χ_{ac} , измеренной в модуляционном магнитном поле h = 0.1 Ое частотой f = 600 Hz в температурном диапазоне 77–400 K и в диапазоне внешнего постоянного магнитного поля $-1 \le H \le +1$ kOe при h||H; калибровку χ_{ac} проводили на ферромагнитном никеле с учетом формы образцов (размагничивающий фактор N);

4) ЯМР ⁵⁵Мп (метод "спинового эха") — для нахождения резонансной частоты, локальных магнитных и валентных состояний ионов марганца и неоднородности их окружения другими ионами и дефектами;

5) резистивный четырехконтактный метод — для определения удельного сопротивления ρ и температуры T_{ms} :

6) магниторезистивный — для регистрации магниторезистивного эффекта MR = $\Delta \rho / \rho_0 = (\rho_0 - \rho_H) / \rho_0$ при H = 0 и 5 kOe в интервале температур 77–400 K.

3. Результаты и их обсуждение

3.1. Структурные свойства. Согласно рентгеноструктурным данным, исследуемые керамические образцы $La_{0.6}Sr_{0.2}Mn_{1.2-v}Cr_vO_{3\pm\delta}$ с y = 0-0.3 близки к однофазным и имеют ромбоэдрически $(R\bar{3}c)$ искаженную перовскитовую структуру. Наблюдаются следы (< 4%) гаусманитной фазы Мп₃O₄. Независимость угла ($\alpha = 90.41^{\circ}$), связанного со степенью искажения структуры, от у основной перовскитовой фазы свидетельствует о неизменности ее кислородной нестехиометрии δ. Уменьшение параметра решетки *а* (рис. 1) от 7.760 Å (y = 0) до 7.746 Å (y = 0.3) связано с замещением в *B*-позициях ионов Mn^{3+} (r = 0.785 Å) [24] меньшими ионами Cr^{3+} (r = 0.755 Å), либо $Mn^{3+} + Mn^4$ $(\bar{r} = 0.727 \text{ Å})$ комбинацией $\mathrm{Cr}^{3+} + \mathrm{Cr}^{4+}$ $(\bar{r} = 0.722 \text{ Å}).$ Более вероятный вариант замещения определен из сопоставления концентрационных относительных изменений $\Delta a/a_0$ и $\Delta r/r_0$ в зависимости от у. При расчетах $\Delta r/r_0$ использовали молярные формулы реальной перовскитовой структуры, определенной на основе механизмов дефектообразования [25,26] с учетом электронейтральности и кристаллохимических особенностей.

Молярные формулы наиболее вероятной дефектной перовскитовой структуры, содержащей анионные, катионные вакансии и наноструктурные кластеры, приведены в таблице. Состав кластера близок к Mn_3O_4 и образован суперпозицией $Mn_2^{2+}Mn_1^{4+}O_4^{2-}$, из которой Mn^{2+} расположен в деформированных *А*-позициях с пониженным анионными вакансиями координационным числом (k < 12), а Mn^{4+} — в *В*-позициях. Структурно в редкоземельных манганитах такие кластеры наблюдали

Рис. 1. Концентрационные зависимости параметра решетки и среднего ионного радиуса керамики $La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}$. На вставке — относительные изменения $\Delta a/a_0$ и $\Delta r/r_0$.

Рис. 2. Температурная зависимость удельного сопротивления $La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}$.

в [27], а их магнетизм проявляется ниже 45 К [28]. Mn^{2+} наблюдали ЯМР-методом при 4.2 К [29]. Достоверность такой дефектности перовскитовой структуры подтверждает сходство концентрационных зависимостей $\Delta a/a_0$ и $\Delta r/r_0$, приведенных на вставке к рис. 1. Ионы Cr^{3+} в окта(*B*)-позициях, нарушая обменное взаимодействие $Mn^{3+} \leftrightarrow Mn^{4+}$, должны влиять на транспортные и магнитные свойства образцов.

3.2. Резистивные свойства. Температурные зависимости удельного сопротивления ρ_0 керамики различных составов иллюстрирует рис. 2. Для всех составов характерно наличие температуры фазового перехо-

у	Молярная формула	γ , g/cm ³
0	$\left\{ La_{0.56}^{3+}Sr_{0.19}^{2+}V_{0.12}^{(c)}(Mn_{0.13}^{2+})_{cl} \right\}_{A} \left[Mn_{0.68}^{3+}Mn_{0.32}^{4+} \right]_{B} O_{2.82}^{2-}V_{0.18}^{(a)}$	5.733
0.05	$\left\{ La_{0.56}^{3+} Sr_{0.19}^{2+} V_{0.12}^{(c)} (Mn_{0.13}^{2+})_{cl} \right\}_{A} \left[Mn_{0.64}^{3+} Cr_{0.05}^{3+} Mn_{0.32}^{4+} \right]_{B} O_{2.82}^{2-} V_{0.18}^{(a)}$	5.734
0.10	$\left\{ La_{0.56}^{3+}Sr_{0.19}^{2+}V_{0.12}^{(c)}(Mn_{0.13}^{2+})_{cl} \right\}_{A}^{-} \left[Mn_{0.59}^{3+}Cr_{0.09}^{3+}Mn_{0.32}^{4+} \right]_{B}^{-}O_{2.82}^{2-}V_{0.18}^{(a)}$	5.737
0.20	$\left\{La_{0.56}^{3+}Sr_{0.19}^{2+}V_{0.12}^{(c)}(Mn_{0.13}^{2+})_{cl} ight\}_{A}^{r}\left[Mn_{0.49}^{3+}Cr_{0.19}^{3+}Mn_{0.32}^{4+} ight]_{B}^{r}O_{2.82}^{2-}V_{0.18}^{(a)}$	5.742
0.30	$\left\{La_{0.56}^{3+}Sr_{0.19}^{2+}V_{0.12}^{(c)}(Mn_{0.13}^{2+})_{cl}\right\}_{A}\left[Mn_{0.40}^{3+}Cr_{0.28}^{3+}Mn_{0.32}^{4+}\right]_{B}O_{2.82}^{2-}V_{0.18}^{(a)}$	5.742

Молярные формулы дефектной кластеризованной перовскитной структуры и ее рентгеновская плотность

да T_{ms} , которая понижается от 360 К (y = 0) до 260 К (y = 0.3) вследствие нарушения ионами Cr^{3+} высокочастотных обменных взаимодействий $Mn^{3+} \leftrightarrow Mn^{4+}$. С этим явлением, по-видимому, связано и увеличение ρ_0 вблизи T_p при повышении y от $10 \text{ m}\Omega \cdot \text{сm}$ (y = 0) до 93 m $\Omega \cdot \text{сm}$ (y = 0.2). Понижение ρ_0 при повышении содержания Cr^{3+} до y = 0.3, когда замещается не только сверхстехиометрический, но и основной марганец, возможно, обусловлено вкладом во взаимодействие и магнитных ионов Cr^{3+} .

Отдельный интерес представляет энергия активации, которая нами была рассчитана для двух процессов переноса заряда. Первый описывается обычным активационным процессом

$$\rho(T) = \rho \exp[E_a/(k_{\rm B}T)],\tag{1}$$

где *Е* — энергия активации, второй — активационным процессом диффузионного типа

$$\rho(T) = (k_{\rm B}T)/(ne^2D) \exp[E_a/(k_BT)],$$
(2)

где $D = a^2 v$ — коэффициент диффузии (*e*, *n* и *v* — заряд, его концентрация и частота перескока соответственно). На рис. З приведена концентрационная

3.3. Магнитные свойства. Температурную зависимость дифференциальной магнитной восприимчивости χ_{ac} для керамических образцов с различным содержанием Cr иллюстрирует рис. 4. Заметно, что замещение хромом сверхстехиометрического марганца приводит к понижению Т_с вследствие ослабления обменных взаимодействий между $\mathrm{Mn}^{3+} \leftrightarrow \mathrm{Mn}^{4+}$ в *B*-позициях ионами Cr³⁺ и вакансиями. Замещение хромом способствует переходу от ферро- к антиферромагнитному состоянию в интервале температур ниже T_c . Размытие температуры Кюри (ΔT_c), которое существенно увеличивается от 30 K (y = 0) до 62 К (y = 0.3), свидетельствует о магнитной неоднородности. Это связано, по-видимому, не только со структурной неоднородностью (анионные, катионные вакансии и наноструктурные кластеры) и нарушением обменных взаимодействий ионами Cr³⁺, но и с плоскостным магнитным расслоением перовскитовой решетки и

Рис. 3. Концентрационные зависимости энергии активации. I — расчет E_a по формуле (1), 2 — по формуле (2).

Рис. 4. Температурные зависимости магнитной восприимчивости $La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}$.

Рис. 5. Фазовая диаграмма $La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}$. РМ — парамагнитное состояние, SRMO — область установления ближнего порядка (short-range magnetic order), FM — ферромагнитное состояние.

Рис. 6. Аномальный гистерезис магнитной восприимчивости.

вкладом в намагниченность магнитного момента Cr^{3+} при y = 0.3.

На рис. 5 приведена магнитная фазовая диаграмма, построенная на основе анализа температурной зависимости χ_{ac} . При уменьшении температуры в интервалах температур, соответствующих размытию температуры Кюри (ΔT_c), происходит переход от парамагнитных к ферромагнитным взаимодействиям между ионами марганца. Максимальное значение χ_{ac} (рис. 4) соответствует полному ферромагнитному упорядочению. Точка перегиба внутри интервала $\Delta T_c = [T_c, T_c^{onset}]$, в которой $d\chi_{ac}/dT$

принимает максимальное значение, соответствует температуре, при которой наблюдается максимальная скорость упорядочения магнитного момента (штриховая линия на рис. 5). Следует отметить, что температура пика магниторезистивного эффекта (T_p) хорошо совпадает с температурой, соответствующей максимальной скорости магнитного упорядочения. Необходимо отметить образец с y = 0.3, когда хром замещает не только сверхстехиометрический марганец, но и основной. Для этого образца характерны максимальные χ_{ac} и ΔT_c при заметном уменьшении удельного сопротивления, что еще раз подтверждает предположение о возможном вкладе Cr^{3+} в магнитные взаимодействия.

Заслуживает внимания обнаружительный аномальный гистерезис (рис. 6), обусловленный однонаправленной магнитной анизотропией обменного взаимодействия между магнитными моментами ферромагнитной матричной перовскитовой структуры и антиферромагнитного кластера [30,31]. При y = 0.2 аномалия исчезает.

Влияние хрома на локальные магнитные состояния ионов марганца и неоднородность их окружения характеризуют спектры ЯМР 55 Mn, которые на рис. 7 приведены при 77 К. Широкие асимметричные спектры подтверждают высокочастотный электронно-дырочный обмен между Mn^{3+} и Mn^{4+} и неоднородность их

Рис. 7. Спектр ЯМР 55 Мп в La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3 $\pm \delta$} при T = 77 К.

окружения другими ионами и вакансиями. Компьютерное разложение основных спектров на составляющие (рис. 7) свидетельствует о локальной неоднородности окружения ионов марганца другими ионами (La³⁺, Sr²⁺), вакансиями и кластерами.

Удовлетворительное согласование экспериментальных резонансных частот и рассчитанных из молярных формул таблицы (с учетом содержания Mn^{3+} и Mn^{4+} и дефектов) получено, если для $Mn^{3+} - F = 410$ MHz, а для $Mn^{4+} - F = 320$ MHz [32,33] с промежуточными (сателлитными) частотами для определенных значений усредненных валентностей $Mn^{\bar{W}}$.

Асимметричное уширение спектров в низкочастотную область с проявлением сателлитов обусловлено ослаблением ионами Cr^{3+} и дефектами обменных взаимодействий $Mn^{3+} \leftrightarrow Mn^{4+}$, повышением концентрации и степени локализации последних, неоднородностью их окружения с образованием кластеров.

3.4. Магниторезистивные свойства. Поскольку манганит-лантановые перовскиты представляют непосредственный интерес как магниторезистивные материалы, на рис. 8 приведены температурные зависимости MR для образцов различных составов. Как и для большинства керамических манганитоперовскитов, наблюдается два типа MR-эффекта: вблизи фазовых переходов T_c и T_{ms} — это T_p (пик MR) и эффект в низкотемпературной области, который по величине превосходит первый в 2-3 раза. Величина пика МR-эффекта T_p изменяется от 7% (y = 0) до 9% (y = 0.2). Природа MR-эффекта вблизи T_p связана с рассеянием носителей заряда на наноструктурных неоднородностях дефектной перовскитовой структуры внутри кристаллитов. Температура Т_р аналогично T_c и T_{ms} понижается с ростом у. MR-эффект в

Рис. 8. Температурная зависимость магниторезистивного эффекта La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3 $\pm\delta$} в магнитном поле *H* = 5 kOe.

низкотемпературной области связан с туннелированием на межкристаллитных границах и зависит от размера кристаллитов и ширины их границ, которые в свою очередь зависят от состава и температуры спекания [34,35]. Для образца с y = 0.3 туннельный МR-эффект максимальный и составляет 16%, а при T_p — минимальный (6%). Это, возможно, связано с размерами кристаллитов и соответственно протяженностью и шириной их межкристаллитных границ.

4. Заключение

На основании комплексных исследований допированных лантан-стронциевых манганитоперовскитов La_{0.6}Sr_{0.2}Mn_{1.2-y}Cr_yO_{3\pm\delta}~(y=0-0.3)сделаны следующие выводы.

1) Параметр решетки *а* ромбоэдрической ($R\bar{3}c$) перовскитовой фазы уменьшается при повышении *у*.

 Реальная структура манганит-лантан-стронциевых перовскитов содержит разновалентные ионы марганца, анионные, катионные вакансии и наноструктурные дефекты кластерного типа.

3) Удовлетворительное согласование концентрационных зависимостей относительных изменений ионных радиусов $\Delta r/r_0$ и параметров перовскитовой структуры $\Delta a/a_0$ получается, если решетка содержит катионные вакансии и Mn^{2+} в *А*-позициях, а ионы марганца $Mn^{3+} \leftrightarrow Mn^{4+}$ и хрома Cr^{3+} — в *В*-позициях.

4) Широкие асимметричные спектры ЯМР ⁵⁵Мп и их компьютерное разложение свидетельствуют о высокочастотном электронно-дырочном обмене между ионами $Mn^{3+} \leftrightarrow Mn^{4+}$, неоднородностях их состояния, обусловленных неравномерностью их окружения другими ионами (La^{3+} , Sr^{2+} , Mn^{2+}), вакансиями и кластерами в дефектных твердых перовскитовых растворах, и нарушении обменного взаимодействия между разновалентными ионами марганца ионами Cr^{3+} .

5) Повышение содержания хрома приводит к увеличению удельного сопротивления в интервале y = 0-0.2 и понижению температур фазовых переходов металл-полупроводник T_{ms} , ферромагнетик-парамагнетик T_c и пика магниторезистивного эффекта T_p .

6) Аномальный магнитный гистерезис, обнаруженный при 77 К, объяснен однонаправленной обменной анизотропией между магнитными моментами ферромагнитной перовскитной структуры и антиферромагнитного кластера.

7) Увеличение энергии активации по мере замещения ионами Cr связано с ослаблением ими электроннодырочных обменных взаимодействий $Mn^{3+} \leftrightarrow Mn^{4+}$.

8) Магниторезистивный эффект вблизи фазовых переходов обусловлен рассеянием носителей заряда на внутрикристаллитных наноструктурных неоднородностях: а низкотемпературный — туннелированием на мезоструктурных межкристаллитных границах.

Список литературы

- [1] E.L. Nagaev. Phys. Rep. 346, 387 (2001).
- [2] J. Coey, M. Veiret, S. Molnaz. Adv. Phys. 48, 167 (1999).
- [3] M.B. Slamon, M. Jaime. Phys. Mod. Phys. 73, 583 (2001).
- [4] R. Mahendiran, Y. Bréard, M. Hervieu, B. Raveau, P. Schiffer. Phys. Rev. B 68, 104 m402 (2003).
- [5] J.-S. Zhou, J.B. Goodemaugh. Phys. Rev. Lett. **62**, 3834 (2000).
- [6] P. Mandal, B. Ghosh. Phys. Rev. B 68, 014422 (2003).
- [7] G. Papavassilion, M. Pissas, G. Diamantopoulos, B. Belesi, M. Fardis, D. Stamopoulos, A.G. Kontos, M. Hennion, J. Dolinsos. Phys. Rev. Lett. 96, 097 201 (2006).
- [8] Э.Е. Зубов, В.П. Дьяконов, Г. Шимчак. ЖЭТФ 122, 1212 (2002).
- [9] G. Dezanneau, A. Sin, H. Roussel, H. Vincent, M. Audier. Solid State Commun 121 133 (2002).
- [10] V.S. Abramov, V.P. Pashchenko, S.I. Khartsev, O.P. Cherenkov. Funct. Mater. 6, 64 (1999).
- [11] V.P. Dyakonov, V.P. Pashchenko, E. Zubov, V. Mikhaylov. J. Magn. Magn. Mater. **146**, 40 (2002).
- F. Yang, L. Méshin, J.-M. Routoure, B. Guillet, R.A. Chakalov.
 J. Appl. Phys. 99, 024 903 (2006).
- [13] В.П. Пащенко, Н.И. Носанов, А.А. Шемяков. Патент UA № 45153. Бюл. 9 (2005).
- [14] В.П. Пащенко, А.А. Шемяков, И.В. Жихарев, В.К. Прокопенко, А.В. Пащенко, Ю.В. Ревенко, А.Г. Сильчева, Е.В. Игнатьева, В.В. Пащенко. Металлофиз. новейш. техн. 27, 1567 (2005).
- [15] G. De Marzi, Z.V. Popović, A. Cantarero, Z. Dohčević-Mitrović, N. Paunović, J. Bok, F. Sapiña. Phys. Rev. B 68, 064 302 (2003).
- [16] L. Morales, R. Allub, B. Alascio, A. Butera, A. Caneiro. Phys. Rev. B 72, 132 413 (2005).
- [17] Z.H. Wang, J.W. Cai, B.G. Shen, X. Chen, W.S. Zhan. J. Phys.: Cond. Matter 12, 601 (2000).
- [18] A. Pena, J. Gutierrez, J.M. Brandiaran, J.L. Pizarro, T. Rojo, L. Lezama, M. Insauti. J. Magn. Magn. Mater. 226–230, 831 (2001).
- [19] G. De Marzi, Z.V. Popović, A. Cantarero, Z. Dohčević-Mitrović, N. Paunović, J. Bok, F. Sapiña. Phys. Rev. B 68, 064 302 (2003).
- [20] Chul Sung Kim, In-Bo Shim, Sung Baek Kim, Sung Ro Yoon, Geun Young Ahn. J. Magn. Mang. Mater. 254–255, 568 (2003).
- [21] A. Martinelli, C. Castellano, C. Mondelli, M.R. Cimberle, M. Tropeano, C. Ritter. Phys. Rev. B 73, 064423 (2006).
- [22] В.П. Пащенко, А.А. Шемяков, А.В. Пащенко, В.К. Прокопенко, Ю.В. Ревенко, В.А. Турченко, В.Н. Варюхин, В.П. Дьяконов, Г. Шимчак. ФНТ **33**, 870 (2007).
- [23] А.В. Пащенко, В.П. Пащенко, А.А. Шемяков. Н.Г. Кисель, В.К. Прокопенко, Ю.В. Ревенко, А.Г. Сильчева, В.П. Дьяконов, Г. Шимчак. ФТТ 50, 1257 (2008).
- [24] R.D. Shannon. Acta Cryst. A: Found. Crystallogr. 32, 751 (1976).
- [25] В.П. Пащенко, С.И. Харцев, О.П. Черенков, А.А. Шемяков, З.А. Самойленко, А.Л. Лойко, В.И. Каменев. Неорган. материалы 35, 1509 (1999).
- [26] W. Bazela, V. Dyakonov, V.P. Pashchenko, H. Szymczak, J.H. Hernandez Velasko, A. Stytula. Phys. Status Solidi B 236, 458 (2003).

- [27] З.А. Самойленко, В.П. Пащенко, О.П. Черенков, В.К. Прокопенко. ЖТФ 72, 87 (2002).
- [28] P. LAiho, K.G. Lisunov, E. Lahderanta, P.A. Petrenko, J. Salminea, V.N. Stamov, Yu.P. Stepanov, V.S. Zachvalinskii. Phys. Chem. Solids 64, 2313 (2003).
- [29] M.M. Savosta, P. Novák. Phys. Rev. Lett. 87, 137 204 (2001).
- [30] К.Б. Власов, А.И. Мицек. ФММ 14, 498 (1962).
- [31] К.П. Белов. УФН 169, 797 (1999).
- [32] К.Н. Михалев, С.А. Лекомцев, А.П. Геращенко, В.Е. Архипов, А.В. Королев, Я.М. Муковский, А.А. Арсенов. Письма в ЖЭТФ 72, 867 (2000).
- [33] M.M. Savosta, P. Novák, Z. Jirák, J. Hejtmánek, M. Maryško. Phys. Rev. Lett. 79, 4278 (1997).
- [34] A.O. Sboychakov, A.I. Rakhmanov, K.I. Kugel, M.Yu. Kagan,
 I.V. Brodsky. J. Magn. Magn. Mater. 258–259, 296 (2003).
- [35] A. Singh, D.K. Aswal, C.S. Viswanalham, G.L. Goswami, L.C. Gupta, J.V. Yakhmi. J. Cryst. Growth 244, 313 (2002).