04,11,19 Эффект катионного замещения во фторкислородных молибдатах (NH)_{2-x}A_xMoO₂F₄

© Е.В. Богданов¹, А.Д. Васильев^{1,2}, И.Н. Флёров^{1,2}, Н.М. Лапташ³

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Институт инженерной физики и радиоэлектроники Сибирского федерального университета,

Красноярск, Россия ³ Институт химии ДВО РАН,

Владивосток, Россия

E-mail: evbogdanov@iph.krasn.ru

(Поступила в Редакцию 16 июня 2010 г.)

Выполнены теплофизические и структурные исследования твердых растворов оксифторидов $(NH_4)_{2-x}A_x$ MoO₂F₄ (*A* : Cs, Rb, K). Выяснен характер влияния катионных замещений на устойчивость исходной фазы (пр. гр. *Cmcm*) и механизм фазовых переходов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-00062), гранта президента РФ для поддержки ведущих научных школ РФ (НШ-1011.2008.2).

1. Введение

Ранее было показано, что замещение центрального катиона W на Мо в кристаллах (NH₄)₂MeO₂F₄ с ромбической структурой (пр. гр. Стст) приводит к значительному изменению температур фазовых переходов и их восприимчивости к внешним давлениям, однако практически не влияет на соответствующие изменения энтропии [1,2]. Такое поведение термодинамических свойств связано с различными механизмами структурных искажений: в $(NH_4)_2WO_2F_4$ (*Cmcm* \rightarrow *P*-1 \rightarrow ?) происходит полное упорядочение лигандов и частичное упорядочение аммонийных групп, а в $(NH_4)_2MoO_2F_4$ $(Cmcm \rightarrow Pnma \rightarrow ?)$ полному упорядочению аммонийных групп сопутствует частичное упорядочение лигандов [3,4]. В результате происходит изменение и природы фазового перехода с сегнетоэластической на антисегнетоэлектрическую.

Активная роль аммонийной группы в механизме изменений структуры установлена при исследовании $(ND_4)_2WO_2F_4$ [5]. Дейтерирование практически не влияет на температуры фазовых переходов и последовательность изменения структуры, но приводит к существенному уменьшению энтропии высокотемпературного перехода вследствие более заторможенных колебаний дейтронной группы, а также к значительному росту барического коэффициента низкотемпературного превращения.

О наличии фазовых переходов в соединениях $A_2MoO_2F_4$ с атомарными катионами Cs, K, Rb в литературе сведения отсутствуют. В [6] показано, что Rb₂MoO₂F₄ обладает ромбической симметрией при комнатной температуре (пр. гр. *Атат*, Z = 4, что эквивалентно группе *Стст* при ином выборе осей), причем часть атомов фтора и кислорода оказались разупорядоченными. По данным электронографических исследований исходная структура $K_2MoO_2F_4$ является тетрагональной (пр. гр. *P4/nmm*, *Z* = 4) с полным упорядочением атомов F и O [7]. Таким образом, только в $Rb_2MoO_2F_4$ можно было рассчитывать наблюдать фазовый переход, связанный, в частности, с упорядочением лигандов.

С целью более глубокого выяснения роли аммонийной группы в механизмах фазовых переходов выполнены исследования термодинамических свойств и структуры ряда твердых растворов $(NH_4)_{2-x}A_xMoO_2F_4$ (*A* : Cs, Rb, K) и Rb₂MoO₂F₄.

2. Синтез и рост кристаллов, структура

Для синтеза твердых растворов $(NH)_{2-x}A_xMoO_2F_4$ (A = K, Rb, Cs) исходными компонентами служили соединение $(NH_4)_2MoO_2F_4$ и соответствующий фторид или карбонат щелочного металла, взятые в стехиометрических соотношениях согласно реакциям

 $(NH_4)_2MoO_2F_4 + KF = NH_4KMoO_2F_4 + NH_3 + HF$,

 $(NH_4)_2MoO_2F_4 + 0.5Rb_2CO_3$

 $= NH_4RbMoO_2F_4 + NH_3 + 0.5CO_2 + 0.5H_2O_2$

 $(NH_4)_2MoO_2F_4 + 0.5Cs_2CO_3$

 $= NH_4CsMoO_2F_4 + NH_3 + 0.5CO_2 + 0.5H_2O.$

Смесь реагентов растворяли при нагревании в HF. Из полученного раствора при медленном испарении на воздухе вырастали кристаллы $(NH_4)_{2-x}A_xMoO_2F_4$. Состав образующихся комплексов контролировался по содержанию аммония, определяемого методом

Кьельдаля, и ИК-спектроскопией и оказался следующим: $(NH_4)_{1.8}Cs_{0.2}MoO_2F_4$ (в дальнейшем будем обозначать NHC), $(NH_4)_{1.7}K_{0.3}MoO_2F_4$ (NHK) и $(NH_4)_{2-x}Rb_xMoO_2F_4$ с x = 0.5, 0.8, 1 (NHRx).

Синтез кристаллов $Rb_2MoO_2F_4$ осуществлялся двумя путями. Во-первых, описанным выше способом при определенном соотношении исходных реактивов. Во-вторых, молибденовую кислоту, содержащую до 5 at.% аммония, смешивали с карбонатом рубидия в платиновой чашке и выдерживали при 300–400°С до удаления аммиака. Полученный Rb_2MoO_4 смачивался водой и обрабатывался раствором HF при нагревании. Кристаллический осадок $Rb_5Mo_3O_6F_{11}$ отфильтровывали, и из маточного раствора при медленном испарении на воздухе формировались призматические кристаллы $Rb_2MoO_2F_4$.

Рентгеновские исследования на монокристальном дифрактометре Smart Apex II показали, что при комнатной температуре все образцы характеризуются ромбической симметрией с пр. гр. *Стст.* В процессе уточнения структуры был определен действительный состав твердых растворов, который, за исключением соединения с калием, оказался весьма близким к определенному химическим анализом. Уточненные концентрации замещающих катионов составили: в NHC — x = 0.19, NHK — x = 0.43, NHR — x = 0.52, 0.83 и 1.01.

3. Влияние замещения одновалентных катионов на неустойчивость ромбической структуры

Для получения информации о наличии фазовых переходов, их температурах и энергетических величинах были выполнены исследования серии синтезированных твердых растворов $(NH_4)_{2-x}A_xMoO_2F_4$ (*A* : Cs, Rb, K) методом дифференциального сканирующего микрокалориметра ДСМ-10. Измерения проводились в интервале температур 120–400 K со скоростью 8 K/min в режимах нагрева и охлаждения на образцах массой 0.1–0.2 g.

На первом этапе измерения выполнены на твердых растворах NHC, NHR_{0.5} и NHK. Обнаруженное аномальное поведение теплоемкости $\Delta C_p(T)$, представленное на рис. 1, где для сравнения приведена также кривая $\Delta C_p(T)$ для (NH₄)₂MoO₂F₄, свидетельствует о наличии фазовых переходов во всех образцах. В соответствии с данными рентгеновских исследований первая искаженная фаза исследованных твердых растворов является ромбической (пр. гр. *Pnma*), как и в (NH₄)₂MoO₂F₄.

Для твердого раствора NHC обнаружена только одна аномалия теплоемкости при T_1 (см. таблицу), характеризующаяся меньшей по сравнению с $(NH_4)_2MoO_2F_4$ величиной максимума ΔC_p (рис. 1). Путем интегрирования функции $\Delta C_p(T)$ определена величина изменения энтальпии $\Delta H_1 = 1600$ J/mol, которая тоже уменьшилась по отношению к энтальпии исходного кристалла $\Delta H_{\Sigma} = 3200$ J/mol.

Рис. 1. Температурные зависимости избыточной теплоемкости (NH₄)₂MoO₂F₄ (*1*), NHC (*2*), NHR_{0.5} (*3*) и NHK (*4*).

Рис. 2. Экспериментальная фазовая T-p-диаграмма $(NH_4)_{1.8}Cs_{0.2}MoO_2F_4$.

Замещения К \rightarrow NH₄ и Rb_{0.5} \rightarrow NH₄ не повлияли на количество аномалий теплоемкости, наблюдавшихся в (NH₄)₂MoO₂F₄: в обоих образцах были зарегистрированы два пика ΔC_p (см. рис. 1 и таблицу). Суммарные величины энтальпии составили $\Delta H_{\Sigma} = 1600$ J/mol (NHK) и $\Delta H_{\Sigma} = 2700$ J/mol (NHR_{0.5}). Таким образом, при всех типах замещения энтальпия фазовых переходов уменьшается по сравнению с исходным (NH₄)₂MoO₂F₄.

Исследования влияния гидростатического давления на температуры фазовых переходов, выполненные с использованием метода ДТА по методике, описанной в [8] были успешными только для NHC. В интервале 0–0.5 GPa (рис. 2) зависимость температуры фазового перехода от давления описывается уравнением T(p) = 242 + 110.5p. Таким образом, замещение Cs \rightarrow (NH₄) приводит не только к снижению температуры T_1 , но и к значительному увеличению барического коэффициента $dT_1/dp = 110.5 \pm 0.5 \text{ K} \cdot \text{GPa}^{-1}$ по сравнению с аммонийным молибденовым соединением $(dT_1/dp \approx 98 \text{ K} \cdot \text{GPa}^{-1}$ [2]).

Соединение	$V, \text{\AA}^3$	T_1, K	$\delta T_1, \mathbf{K}$	ΔS_1 , J/mol · K	T_2, K	ΔS_2 , J/mol · K
$(NH_4)_2MoO_2F_4$	612.05	268	2.8	$10.8(18.2^{*} [2])$	191	2.5
NHC	626.24	242	4.8	6.9	—	-
NHK	605,65	288	3.9	4.7	204	0.5
NHR _{0.5}	611.76	277	3.2	9.1	210	1.7
NHR _{0.8}	609.36	281	2.3	8.4	220.0	1.4
NHR _{1.0}	610.76	283	3.3	7.4	219.6	1.7
$Rb_2MoO_2F_4$	606.79	257		9.2*	210	1.2^{*}

Температуры и энтропии фазовых переходов в $(NH_4)_{2-x}A_xMoO_2F_4$, полученные методом ДСМ, и объем элементарной ячейки V в фазе *Стст*

Примечание. * — данные исследований методом адиабатической калориметрии.

Среди соединений A_2 MoO₂F₄ с атомарными катионами только в Rb₂MoO₂F₄, имеющем разупорядоченную ромбическую структуру [6], можно предполагать наличие фазовых переходов, связанных с упорядочением лигандов при понижении температуры. Именно поэтому исследования методом ДСМ были продолжены на серии твердых растворов NHR*x* и привели к обнаружению во всех образцах аномалий теплоемкости, связанных со структурными превращениями. Результаты представлены на рис. 3 и в таблице.

Увеличение концентрации рубидия приводит к изменениям температур фазовых переходов в сравнительно узких интервалах температур (см таблицу), но сопровождается значительным размытием аномалий теплоемкости. Одним из важных результатов калориметрического исследования является возможность фиксации фазовых переходов при T_1 и T_2 даже в образцах NHRx с высокой концентрацией Rb. На температурной зависимости $\Delta C_p(T)$ для NHR_{1.0} наблюдалась еще одна аномалия теплоемкости между температурами T_1 и T_2 , природа которой пока остается неизвестной.

Объем элементарной ячейки в фазе *Стст* всех исследованных твердых растворов приведен в таблице.

Рис. 3. Фазовая диаграмма температура-концентрация для (NH₄)_{2-x}Rb_xMoO₂F₄.

Низкотемпературная фаза во всех составах осталась ромбической (*Pnma*), как и в аммонийном соединении (NH₄)₂MoO₂F₄

Аномального поведения теплоемкости Rb₂MoO₂F₄ в ДСМ-экспериментах не обнаружено. Однако при сравнении данных рентгеновских исследований этого кристалла при комнатной (пр. гр. Стст) и низких температурах установлено, что в районе ~ 260 К происходит изменение симметрии. Предварительные результаты свидетельствуют о том, что искаженная фаза является не ромбической (пр. гр. Pnma), как в (NH₄)₂MoO₂F₄ и во всех исследованных в работе твердых растворах $(NH_4)_{2-x}A_xMoO_2F_4$, а триклинной (пр. гр. $P\overline{1}$), которая была определена для оксифторида (NH₄)₂WO₂F₄ [3]. Основываясь на совокупности калориметрических и структурных данных, можно было предполагать, что Rb₂MoO₂F₄ испытывает фазовый переход второго рода, который не всегда фиксируется методом ДСМ. На следующем этапе измерения теплоемкости этого оксифторида выполнены на адиабатическом калориметре, обладающем значительно более высокой чувствительностью.

4. Исследования темплоемкости Rb₂MoO₂F₄

Результаты измерения температурной зависимости молярной теплоемкости кристалла $Rb_2MoO_2F_4$ представлены на рис. 4. Аномальное поведение теплоемкости обнаружено в диапазоне от 200 до 310 K с локальными максимумами при температурах $T_1 = 256.50 \pm 0.5$ K и $T_2 = 210 \pm 2$ K. Величина T_1 удовлетворительно согласуется с температурой, при которой наблюдались изменения симметрии кристалла. Характер температурной зависимости теплоемкости свидетельствует о том, что $Rb_2MoO_2F_4$ действительно претерпевает при T_1 фазовый переход второго рода.

Для определения интегральных характеристик фазовых переходов выполнено разделение молярной теплоемкости $Rb_2MoO_2F_4$ на регулярную составляющую и аномальный вклад, связанный с фазовыми переходами. Экспериментальные данные $C_p(T)$ значительно выше T_1 и ниже T_2 были аппроксимированы полиномиальной

Рис. 4. Температурная зависимость молярной теплоемкости Rb₂MoO₂F₄. Штриховая линия — решеточная теплоемкость. На вставке — соотношение аномальных теплоемкостей Rb₂MoO₂F₄ (*1*) и (NH₄)₂MoO₂F₄ (*2*).

функцией с интерполяцией на область аномального поведения теплоемкости (штриховая линия на рис. 4). Интегрирование по температуре функции $\Delta C_p(T)$ во всем интервале существования аномальной теплоемкости (190–320 K) позволило определить суммарное изменение энтальпии $\Sigma \Delta H_i = 2400 \pm 60$ J/mol. Примерное разделение вкладов энтальпии от двух переходов (рис. 4, пунктирная линия) приводит к результатам: $\Delta H_i \approx 2100$ J/mol и $\Delta H_2 \approx 270$ J/mol. Соответствующие изменения энтропии составили $\Delta S_1 = 9.2$ J/mol·K и $\Delta S_2 = 1.2$ J/mol·K.

Температурная зависимость аномальной теплоемкости представлена на вставке к рис. 4, где для сравнения приведены данные для $(NH_4)_2MoO_2F_4$ [2]. Интересно, что детали обеих зависимостей идентичны: наличие аномальной теплоемкости выше T_1 , поведение в интервале $T_1 - T_2$. Однако замещение $Rb \rightarrow NH_4$ привело к сужению этого интервала, к изменению первого рода перехода при T_1 на второй и к существенному уменьшению энтропии, связанной с последовательностью переходов (см. таблицу).

На температурной зависимости диэлектрической проницаемости $Rb_2MoO_2F_4$ не было обнаружено какихлибо заметных аномалий в исследованном диапазоне температур 100–350 K.

Сравнение эффектов химического и гидростатического давлений в молибденовых оксифторидах

В отличие от внешнего (гидростатического и одноосного) давления химическое давление (изменяемое путем всевозможных замещений структурных элементов) может вызвать как уменьшение, так и увеличение объема элементарной ячейки кристалла. Последний случай можно рассматривать, как связанный с уменьшением внутреннего давления, если знак изменения температуры фазового перехода противоположен знаку барического коэффициента dT/dp.

Для исследованных твердых растворов при концентрации замещающего катиона $x \le 1$ знак смещения температуры перехода из фазы *Стст dT_1/dx* соответствует знаку, ожидаемому из фазовой T-p-диаграммы.

Частичное замещение аммонийной группы NH₄ катионами Cs с большим ионным радиусом сопровождается довольно значительным увеличением объема элементарной ячейки $V (\sim 2.3\%)$ (рис. 5 и таблица), которое можно рассматривать, как обусловленное приложением внутреннего "отрицательного" давления. Используя экспериментальное значение барического коэффициента для $(NH_4)_2 MoO_2 F_4 (dT_1/dp \approx 98 \text{ K} \cdot \text{GPa}^{-1} [2]),$ можно оценить величину давления, необходимого для понижения температуры T_1 от 268 К в (NH₄)₂MoO₂F₄ до 242 К, где при атмосферном давлении наблюдается переход в NHC. Это давление должно составлять $p \sim (-0.3 \, {
m GPa})$. Однако, если это же давление приложить к NHC, для которого $dT_1/dp \approx 110.5 \text{ K/GPa}$, то получим величину $T_1 \approx 280 \,\mathrm{K}$, превышающую температуру перехода в (NH₄)₂MoO₂F₄. Причин такого несоответствия может быть по крайней мере две. Во-первых, это нелинейность границы между фазами Стст и Рпта. Во-вторых, и скорее всего, различие барических коэффициентов для (NH₄)₂MoO₂F₄ и NHC в немалой степени обусловлено тем, что при замещении Cs — NH₄ происходит изменение не только размера эффективного одновалентного катиона, но и его формы. В соответствии с фазовой *T*-*p*-диаграммой (NH₄)₂MoO₂F₄ область существования промежуточной фазы сужается при отрицательных давлениях. И при $p \approx (-0.3)$ GPa температура T_2 должна быть очень близка к нижнему пределу температурного интервала исследований на ДСМ. Вполне вероятно, что именно по этой причине не наблюдалась низкотемпературная аномалия теплоемкости в NHC.

Рис. 5. Фазовая диаграмма объем элементарной ячейки-концентрация для твердых растворов (NH₄)_{2-x}A_xMOO₂F₄.

Ионный радиус атома калия меньше, чем у аммонийной группы, поэтому замещение $K \rightarrow NH_4$ приводит к ожидаемому уменьшению объема элементарной ячейки V на ~1% (см. рис. 5 и таблицу). Рассуждения, использованные выше для NHC, позволяют утверждать, что рост температуры T_1 на ~ 20 K в NHK связан с изменением избыточного внутреннего давления в пределах $p \sim 0.2$ GPa.

Оба рассмотренных случая замещения связаны со сравнительно небольшими концентрациями заместителей. Более подробно изучен ряд твердых растворов NHRx. Наблюдалось регулярное изменение объема элементарной ячейки V с ростом концентрации x (см. рис. 5 и таблицу). Благодаря близким значениям ионных радиусов NH4⁺ и Rb⁺ величина объема ячейки кристаллов с *x* ≤ 1 колеблется в пределах десятых долей процента. При этом температуры обоих переходов растут, но скорость изменения T_1 меньше, и она достигает максимума при x = 1. Полное замещение аммонийной группы приводит к тому, что в Rb₂MoO₂F₄ температуры переходов уменьшаются. Такое поведение можно объяснить, например, тем, что на начальной стадии $(x \leq 1)$ замещение Rb \rightarrow NH₄ происходит лишь в одной из неэквивалентных кристаллографических позиций, занимаемых аммонийной группой, а при *x* > 1 заполнение другой позиции сопровождается значительным изменением характера межатомных взаимодействий. И как результат Rb₂MoO₂F₄ с объемом ячейки почти на 1% меньше, чем у (NH₄)₂MoO₂F₄, испытывает фазовый переход в фазу с симметрией Р-1, а не Рпта, которая была определена для всех составов твердых растворов. Следует отметить, что низкотемпературная фаза Р-1 характерна и для (NH₄)₂WO₂F₄ [1], также имеющего объем элементарной ячейки $V = 608.9 \,\text{\AA}^3$ меньше объема $(NH_4)_2MoO_2F_4$, хотя ионные радиусы центральных атомов этих оксифторидов очень близки: $R_{W^{+6}} = 0.60 \text{ \AA}$, $R_{\rm Mo^{+6}} = 0.59 \,{\rm \AA^3}.$

При уточнении структуры методом монокристального рентгеновского дифрактометра действительно было установлено, что замещающие катионы разного вида неравномерно заселяют в структуре твердых растворов две неэквивалентные позиции, занимаемые аммонийными группами.

Следует также обратить внимание на то, что во всех твердых растворах переход из фазы *Стст* сопровождается довольно большим температурным гистерезисом, величина которого меняется не очень сильно с изменением концентрации катиона-заместителя (см. таблицу). И величины изменения энтропии при обоих фазовых переходах хотя и уменьшаются в твердых растворах, но изменяются от состава к составу в пределах погрешности их определения методом ДСМ. Исключение составляет лишь NHK, в котором величины ΔS_1 и ΔS_2 уменьшились в несколько раз.

Несомненный интерес представляет сравнение эффекта замещения тетраэдрического катиона сферическим на устойчивость исходных фаз ромбических (NH₄)_{2-x}A_xMoO₂F₄ (*Cmcm*) и кубических $(NH_4)_{3-x}A_xMoO_3F_3$ (*Fm-3m*) [9–11] оксифторидов. В первом типе структур октаэдрические анионы MoO_2F₄ изолированы, а во втором полиэдры MoO_3F_3 и $A_xO_3F_3$ связаны общими лигандами в их вершинах. С одной стороны, для обоих типов структур характерно значительное уменьшение энтропии переходов из исходных фаз в результате замещения $A \rightarrow NH_4$, с другой в ромбических кристаллах нет такого существенного изменения температуры перехода, как в кубических.

6. Заключение

Изменение химического давления в оксифторидах $(NH_4)_{2-x}A_xMeO_2F_4$ за счет замещения одновалентного тетраэдрического катиона на сферический позволяет регулировать устойчивость фазы *Стст* по отношению к изменению как температуры, так и давления, изменяет род и энтропию фазового перехода при T_1 , но мало влияет на аномальное поведение кристаллов при T_2 . Совокупность установленных фактов, а также значительное уменьшение энтропии перехода из фазы *Стст* в Rb₂MoO₂F₄ по сравнению с $(NH_4)_2MoO_2F_4$ позволяют заключить, что аммонийный катион играет важную роль в механизме этого структурного превращения.

Выражаем глубокую признательность А.А. Удовенко (ИХ ДВО РАН) за любезно предоставленные структурные данные для $Rb_2MoO_2F_4$.

Список литературы

- И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 4, 711 (2006).
- [2] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флёров, Н.М. Лапташ. ФТТ 50, 1, 148 (2010).
- [3] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 645 (2008).
- [4] A.A. Udovenko, A.D. Vasiliev, N.M. Laptash. Acta Cryst. B 66, 34 (2010).
- [5] И.Н. Флёров, В.Д. Фокина, М.В. Горев, Е.В. Богданов, М.С. Молокеев, А.Ф. Бовина, А.Г. Кочарова. ФТТ 49, 6, 1093 (2007).
- [6] В.С. Сергиенко, М.А. Порай-Кошиц, Т.С. Ходашова. ЖСХ 13, 3, 461 (1972).
- [7] Г.З. Пинскер, В.Г. Кузнецова. Кристаллография 13, 1, 74 (1968).
- [8] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ 46, 5, 888 (2004).
- [9] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, М.С. Молокеев, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 49, *1*, 136 (2007).
- [10] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 3, 497 (2008).
- [11] J. Ravez, G. Peraudeau, H. Arend, S.C. Abrahams, P. Hagenmuller. Ferroelectrics 26, 767 (1980).