04,11,19

Изучение фазовых переходов и теплового расширения некоторых сложных вольфрамсодержащих оксидов

© Н.Г. Черноруков, А.В. Князев, Н.Ю. Кузнецова, И.В. Ладенков

Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новогород, Россия

E-mail: knyazevav@gmail.com

(Поступила в Редакцию 26 января 2010 г. В окончательной редакции 24 мая 2010 г.)

Методом высокотемпературной рентгенографии и дифференциального термического анализа изучены фазовые переходы и определены коэффициенты теплового расширения в соединениях со структурой браннерита, дефектного пирохлора и вольфрамовой бронзы с общей формулой $M^{I}A^{V}WO_{6-\delta}$ ($M^{I} - \Box$, H₃O, Li, Na, K, Rb, Cs; $A^{V} - V$, Nb, Sb, Ta; $\delta = 0, 0.5$). Показано, что в браннеритах и вольфрамовой бронзе отсутствуют фазовые переходы, и соединения характеризуются значительной анизотропией теплового расширения, тогда как в пирохлорах выявлено три типа фазовых переходов и тепловые деформации в них определяются размером атомов M^{I} .

1. Введение

Разнообразие физических свойств структур кислородно-октаэдрического типа (перовскитов, пирохлоров, калиево-вольфрамовых бронз, ильменитов, слоистых структур, фаз Ауривиллиуса и др.) многие годы определяет устойчивый интерес исследователей. Варьируя состав соединений, можно изменять их физические свойства в достаточно широких пределах, что позволяет осуществлять целенаправленный набор материалов с заданным комплексом физических характеристик для создания компонентов новой техники. В связи с этим изучение структуры и свойств кристаллических веществ с особыми физическими свойствами имеет не только научное, но и большое практическое значение.

В работе [1] нами установлено, что соединения LiVWO₆ и NaVWO₆ относятся к структурному типу браннерита и имеют квазислоистый характер. Слои состава VWO₆ построены из координационных полиэдров атомов ванадия и вольфрама, представляющих собой искаженные октаэдры, соединенные между собой по общему ребру. Атомы щелочных металлов расположены в межслоевом пространстве в виде координационных полиэдров M^1 O₆, построенные из трех атомов кислорода одного и трех аналогичных атомов кислорода соседнего слоя.

В соответствии с полученными структурными данными для соединений со структурой дефектного пирохлора [2–4] характерны кубические элементарные ячейки с пространственной группой Fd3m. Их кристаллические решетки состоят из каркаса состава $A^{V}WO_{6}^{-}$, в гексагональных каналах которого расположены атомы M^{1} , имеющие октаэдрическую координацию, либо вакансии. Каркас построен из октаэдров WO_{6} и $A^{V}O_{6}$, которые объединены общими вершинами. Для атомов M^{1} возможны три варианта заселения различных кристаллографических позиций: 16(d) (1/2, 1/2, 1/2), 8(b) (3/8, 3/8, 3/8) и 32(e) (x, x, x). В качестве примера на рис. 1 представлен фрагмент структуры CsTaWO₆. В качестве объектов исследований нами выбраны соединения состава $M^{I}A^{V}WO_{6-\delta}$ ($M^{I} - \Box$, H₃O, Li, Na, K, Rb, Cs; $A^{V} - V$, Nb, Sb, Ta; $\delta = 0, 0.5$). Высокотемпературные исследования соединений подобного состава ранее не проводились.

2. Эксперимент

Для получения изучаемых соединений использовались два метода синтеза: 1) реакция в твердой фазе в температурном интервале 600–900°С; 2) реакция ионного обмена. Следует отметить, что выбор метода определяется температурой плавления или разрушения соединения. С помощью первого метода получены фазы, устойчивые до 700°С, к которым относятся соединения со структурой минерала браннерита и пирохлоры, содержащие крупные атомы одновалентных элементов

Рис. 1. Фрагмент структуры CsTaWO₆.

Таблица 1. Состав и кристаллографические параметры соединений состава $M^{I}A^{V}WO_{6-\delta}$ ($M^{I} - \Box$, H₃O, Li, Na, K, Rb, Cs; $A^{V} - V$, Nb, Sb, Ta; $\delta = 0, 0.5$)

Соединение	Структурный тип	Пространственная группа симметрии	Параметры элементарной ячейки, Å			
LiVWO ₆	Francisco	(2)/m	a = 9.3699(2) b = 3.67063(6) c = 6.6258(2) $\beta = 112.134^{\circ}(2)$			
NaVWO ₆	Структурный Пространс тип Группа сил Браннерит С2/ Вольфрамовая 14 Бронза Г4 Пирохлор Fd3	C 2/ m	a = 9.4422(1) b = 3.67734(4) c = 7.2345(1) $\beta = 111.769^{\circ}(1)$			
TaWO _{5.5}	Вольфрамовая бронза	IĀ	a = 24.518(4) c = 3.9283(9)			
TaWO _{5.5} KNbWO ₆ KSbWO ₆ KTaWO ₆ RbNbWO ₆ RbSbWO ₆ CsVWO ₆ CsNbWO ₆ CsSbWO ₆ CsSbWO ₆ CsTaWO ₆	Пирохлор	Fd3m	10.314 10.5001(1) 10.23671(7) 10.4695(1) 10.3670(9) 10.2295(19) 10.3377(14) 10.2056(3) 10.3944(7) 10.2867(4) 10.3793(2)			

Примечание. Жирным шрифтом выделены параметры, полученные при уточнении методом Ритвельда.

с $r \ge 1.38$ Å [1,5]. Вторым методом получена танталовольфрамовая кислота состава H_3OTaWO_6 [6].

Съемку рентгенограмм для подтверждения фазовой индивидуальности проводили на рентгеновском дифрактометре XRD-6000 фирмы SHIMADZU (Cu K_{α} -излучение, геометрия съемки на отражение) с шагом сканирования 0.02° в интервале 2 θ 10–120°. Состав и кристаллографические параметры изученных соединений приведены в табл. 1. Высокотемпературные рентгеновские исследования в интервале 298–1273 К проводили на том же дифрактометре с шагом сканирования 0.02° в интервале 2 θ 10–60° с использованием приставки НА-1001 фирмы SHIMADZU.

Термические исследования проводили на дифференциальном сканирующем калориметре LABSYS фирмы SETARAM при скорости нагрева 10 К/min. В экспериментах использовали платиновые и никелевые тигли. Последние применялись при изучении ванадовольфраматов в связи с высокой реакционной способностью их расплавов и низкой растворимостью продуктов кристаллизации.

3. Результаты и обсуждение

Сочетание методов высокотемпературной рентгеновской дифрактометрии и термического анализа (ТГ–ДТА) позволило установить ряд особенностей процессов, проходящих в соединениях при нагревании. Все изученные соединения, за исключением водородной формы, характеризуются высокой термической стабильностью и, как показали наши исследования, разрушаются по одному из следующих механизмов: инконгруэнтное плавление или термораспад в твердой фазе. В соединениях со структурой минерала пирохлора до температур разрушения обнаружены фазовые переходы в интервале температур 320–1310 K, тогда как в браннеритах полиморфизм отсутствует. Для соединений состава LiVWO₆, NaVWO₆, KSbWO₆, RbNbWO₆, CsTaWO₆ в работах [1–3,5] показано, что при более низких температурах вплоть до температур жидкого гелия фазовые переходы не обнаружены.

275

Для соединений LiVWO₆ и NaVWO₆ обнаружены эндотермические эффекты при 1022 и 1031 К соответственно, обусловленные инконгруэнтным плавлением. Отметим, что температуры плавления LiVWO₆ и Li₂WO₄ ($T_m = 1013$ K), а также NaVWO₆ и Na₂WO₄ ($T_m = 1018$ K) практически совпадают (табл. 1). Кроме того, в натрийсодержащих соединениях составов M^1 VO₃, M_2^1 WO₄, M^1 VWO₆ в сравнении с производными лития наблюдаются более высокие температуры плавления на 5–10 K, что связано с большей прочностью связи атома M^1 с атомами анионной подрешетки. На рис. 2 и в табл. 2 приведены температурные зависимости параметров элементарной ячейки для соединений LiVWO₆ и NaVWO₆. Кроме того, в табл. 2 представлены коэффициенты теплового расширения, рассчитанные с помо-

T,K	a,Å	$\alpha_a \cdot 10^6, \mathrm{K}^{-1}$	b, Å	$\alpha_b \cdot 10^6, \mathrm{K}^{-1}$	$c, \mathrm{\AA}$	$\alpha_c \cdot 10^6, \mathrm{K}^{-1}$	$\beta,^{\circ}$	$\alpha_{\beta} \cdot 10^6, \mathrm{K}^{-1}$	V, Å	$\alpha_V \cdot 10^6, \mathrm{K}^{-1}$
LiVWO ₆										
298	9.3699(2)	7.99	3.67063(6)	1.95	6.6258(2)	14.9	112.134(2)	-7.72	211.090(9)	31.0
473	9.3894(17)	12.3	3.6713(4)	2.29	6.6492(14)	25.3	111.98(2)	-7.73	212.53(5)	46.1
673	9.4139(17)	17.3	3.6734(4)	2.67	6.6921(14)	37.1	111.84(2)	-7.74	214.80(5)	63.1
873	9.4544(19)	22.2	3.6754(5)	3.06	6.7487(16)	48.6	111.61(2)	-7.76	218.00(5)	79.8
NaVWO ₆										
298	9.4422(1)	10.2	3.67734(4)	1.78	7.2345(1)	8.25	111.769(1)	-12.5	233.284(6)	30.0
473	9.4585(18)	13.2	3.6787(6)	1.81	7.2654(19)	15.5	111.58(1)	-12.6	235.09(5)	40.1
673	9.4942(13)	16.6	3.6792(5)	1.83	7.3014(11)	23.6	111.25(1)	-12.6	237.70(4)	51.5
873	9.5252(17)	19.9	3.6812(6)	1.86	7.3539(13)	31.7	110.96(1)	-12.6	240.79(5)	62.8

Таблица 2. Параметры элементарной ячейки и коэффициенты теплового расширения для различных температур сложных оксидов со структурой браннерита (*C*2/*m*)

щью программного комплекса DTC [7]. Как видно из представленных данных, браннериты характеризуются значительной анизотропией теплового расширения, что связано со слоистым характером их структуры. Наибольшее тепловое расширение наблюдается вдоль кристаллографического направления **c**, перпендикулярного слою VWO₆, что связано с меньшей прочностью связей в данном направлении. Структура слоя неоднородна и может быть представлена в виде цепей, образованных связанными по ребрам октаэдрами и расположенных вдоль направления **b** (рис. 3). При этом две соседние цепи связаны между собой по ребрам через один

Рис. 2. Температурные зависимости параметров элементарной ячейки LiVWO₆ (298 < T < 873 K).

октаэдр, поэтому в рамках слоя наибольшее расширение структура претерпевает вдоль направления а, в то время как вдоль направления b практически не изменяется. В литийсодержащих соединениях объемный коэффициент теплового расширения значительно больше, чем у натрийсодержащих, что обусловлено более существенными термическими деформациями вдоль направления с для LiVWO₆. В ванадатовольфрамате лития полиэдр LiO₆ представляет собой явно выраженную тетрагональную бипирамиду, в которой разница длин экваториальных и аксиальных связей составляет 0.472 А. Поэтому, на наш взгляд, значительное термическое расширение связано с выравниванием длин связей Li-O в координационном полиэдре LiO_6 , что уже практически реализовано при 298 К в соединении NaVWO₆. Следует отметить, что при нагревании для 67% соединений с моноклинной сингонией, представленных в литературе [8], характерно уменьшение тупого угла моноклинности. Средняя величина коэффициента α_{β} при термических деформациях составляет $-7 \cdot 10^{-6} \, \mathrm{K}^{-1}$ [8], что соответствует изменению угла *β* на 0.6° при изменении температуры на 1000 К. Для соединения LiVWO₆ величина α_{β} составила $-7.7 \cdot 10^{-6} \, \mathrm{K}^{-1}$, а для NaVWO₆ — $12.6 \cdot 10^{-6} \, \mathrm{K}^{-1}$, что является типичным для изменения угла моноклинности (табл. 2). Следовательно, структурный тип браннерита вписывается в общую статистику расширения моноклинных кристаллов, т.е. для него наблюдается резко анизотропный характер термических деформаций и стремление угла моноклинности к 90°.

Соединения со структурой дефектного пирохлора в отличие от сложных оксидов со структурой браннерита, как показали наши исследования, имеют фазовые переходы разных типов. Обнаруженные переходы можно условно отнести к трем типам: 1) обратимые переходы второго рода без изменения структурного типа; 2) необратимые переходы первого рода без изменения структурного типа; 3) необратимые переходы первого рода с изменением структурного типа.

Порядок переходов в предложенной классификации построен по принципу радикальности изменений в кристаллической структуре.

Рис. 3. Фрагмент структуры браннерита.

Переходы первого типа были обнаружены на трех соединениях состава RbNbWO₆, CsVWO₆ и CsTaWO₆ и наблюдались в виде двух последовательных эндотермических эффектов. В работе [3] при изучении температурной зависимости изобарной теплоемкости RbNbWO₆ нами были определены температуры и энтальпии данных превращений, в результате которых происходит переход из параэлектрического в ферроэлектрическое состояние. На рис. 4 представлена кривая ДТА для CsVWO₆. В результате первого перехода, который соответствует температуры, тогда как второй переход при T_1 характеризурется большим тепловым эффектом, а следовательно,

Рис. 4. ДТА-кривая CsVWO₆.

Рис. 5. Температурная зависимость параметра *а* элементарной ячейки для CsVWO₆.

более значительными перестройками в кристаллической структуре. Интересен тот факт, что отношения переходов (T_1/T_1') для трех изученных соединений изменяются в ряду RbNbWO₆-CsVWO₆-CsTaWO₆ следующим образом 1.014-1.168-1.234. Следовательно, чем выше температура переходов, тем больше разница между T_1 и Т₁. Кроме того, отношения энтальпий фазовых переходов $(\Delta_{tr}H_1^{\circ}/\Delta_{tr}H_1^{\circ'})$ также увеличиваются и составляют в этом ряду соединений 0.9-12.0-52.4, что свидетельствует о все больших структурных перестройках во время второго фазового перехода. Наличие фазовых переходов было дополнительно подтверждено высокотемпературной рентгенографией. Как видно из рис. 5, в области фазовых переходов наблюдается аномальное изменение температурной зависимости параметра элементарной ячейки при Т₁, причем величина "скачка" существенно зависит от отношения $\Delta_{tr}H_1^{\circ}/\Delta_{tr}H_1^{\circ'}$. Важно отметить, что после подобных фазовых переходов наблюдается значительное уменьшение коэффициентов теплового расширения (табл. 3).

Переход второго типа обнаружен в соединениях состава CsTaWO₆ и KSbWO₆. Данные переходы, вероятно, связаны со сменой кристаллографических позиций атомов одновалентного элемента. В работах [2,9] нами были уточнены структуры низкотемпературных модификаций рассматриваемых соединений методом Ритвельда. Было показано, что атомы щелочного элемента в соединениях KSbWO₆ и CsTaWO₆ занимают кристаллографические позиции 32e(x, x, x) и 8b(3/8, 3/8, 3/8) соответственно. Следовательно, для пирохлоров возможен полиморфизм, связанный с изменением позиции атома M^{I} . Вероятно, наиболее термодинамически стабильной является модификация, в которой атомы M^{I} занимают кристаллографические позиции 32e.

Критерием относительной устойчивости может выступать энтальпия фазового перехода, положительный знак которой указывает на образование менее стабильной фазы, отрицательной — более стабильной. Например, фазовый переход в KSbWO₆ при температуре 1299 К (табл. 1) сопровождается эндотермическим эффектом, т. е. атом калия переходит из позиции 32*e* в 8*b*, тогда как в CsTaWO₆ при T = 1257 К наблюдается экзотермический эффект, обусловленный переходом из позиции 8*b* в 32*e* атома цезия.

Переход третьего типа обнаружен только в одном соединении состава ТаWO5.5, образующемся при дегидратации водородной формы H₃OTaWO₆. Структура TaWO_{5.5} в отличие от пирохлоров состава $M^{I}A^{V}WO_{6}$ содержит, согласно работе [10], дополнительный дефект по кислороду, в связи с которым заселенность позиции 48f составляет 11/12. Последнее обстоятельство способствует переходу из структурного типа пирохлора с кубической сингонией (Fd3m) в структурный тип вольфрамовой бронзы с тетрагональной сингонией $(I\bar{4})$ при достаточно низкой температуре $(T_3 = 954 \text{ K})$ (табл. 1). Необходимо отметить, что данный "бескатионный" пирохлор имеет минимальный коэффициент теплового расширения ($\alpha_a = 1.53 \cdot 10^{-6} \, \mathrm{K}^{-1}$) (табл. 3) среди всех изученных нами соединений и относится к низкорасширяющимся материалам. Безусловно, это связано с особенностями строения соединения, имеющего значительное количество структурных полостей, а именно отсутствие катиона в гексагональных каналах и некоторых атомов кислорода в каркасе, что позволяет атомам более свободно совершать тепловые колебания, поэтому удается нивелировать температурное воздействие на структуру. Вследствие уникальных теплофизических свойств "бескатионного" пирохлора возможно создание материалов и композитов на его основе, обладающих сверхвысокой стойкостью к тепловым ударам в широкой области температур.

Высокотемпературная модификация TaWO_{5.5} со структурой вольфрамовой бронзы также обладает необыч-

Рис. 6. *а*) ДТА-кривая H₃OTaWO₆. *b*) Температурная зависимость параметра *а* элементарной ячейки для пирохлоров состава TaWO_{5.5} и H₃OTaWO₆. Области дегидратации: *1* — HTaWO₆ · H₂O, *2* — HTaWO₆ · 0.5H₂O, *3* — HTaWO₆.

ными теплофизическими свойствами. Как видно из табл. 3 при нагревании происходит расширение вдоль кристаллографических осей **a** и **b** и сжатие вдоль **c**, а следовательно, $\alpha_a > 0$, $\alpha_c < 0$. Последнее обстоятельство приводит, с одной стороны, к существенной анизотропии теплового расширения, а с другой — к малому значению объемного теплового расширения ($\alpha_V = 3.38 \cdot 10^{-6} \, \mathrm{K}^{-1}$).

Анализ коэффициентов теплового расширения α_a пирохлоров состава $M^{I}A^{V}WO_{6}$ показал, что все изученные соединения, за исключением TaWO_{5.5}, относятся к среднерасширяющимся материалам. Кроме того, наблюдается тенденция увеличения коэффициентов теплового расширения в ряду $\Box \rightarrow K \rightarrow Rb \rightarrow Cs$ при T < 773 K, т.е. с увеличением размера атома M^{I} образующаяся более плотноупакованная структура имеет большую склонность к термическим деформациям.

Изучение дегидратации водородной формы показало, что отщепление воды протекает в три этапа с удалением половины молекул воды на формульную единицу на каждой стадии. Схема последовательной дегидратации приведена далее

H₃OTaWO₆
$$\xrightarrow{376 K}$$
 HTaWO₆ \cdot 0.5H₂O
 $\xrightarrow{561 K}$ HTaWO₆ $\xrightarrow{738 K}$ TaWO_{5.5}.

<i>T</i> ,K	a,Å	$\alpha \cdot 10^6, \mathrm{K}^{-1}$	T, K	a,Å	$\alpha \cdot 10^6, \mathrm{K}^{-1}$	T, K	a,Å	$\alpha \cdot 10^6, \mathrm{K}^{-1}$	T, K	a,Å	$\alpha \cdot 10^6, \mathrm{K}^{-1}$
KSbWO ₆		CsTaWO ₆			RbNbWO ₆			CsVWO ₆			
298	10.23671(7)	2.47	298	10.3793(2)	4.71	298	10.3589(7)	_	298	10.2056(3)	
473	10.2418(8)	3.52	473	10.3917(8)	5.27	318	10.3611(8)	—	373	10.2148(18)	
573	10.2455(7)	4.12	573	10.3958(8)	5.59	323	10.3622(7)	—	423	10.2182(19)	
673	10.2522(6)	4.72	673	10.4025(9)	5.91	333	10.3610(6)	—	473	10.2215(17)	8.41
773	10.2556(9)	5.31	773	10.4053(9)	6.23	338	10.3608(7)	4.43	523	10.2264(13)	
873	10.2604(8)	5.91	873	10.4159(8)	6.55	358	10.3628(9)	4.50	623	10.2336(21)	
973	10.2682(8)	6.50	973	10.4214(9)	6.87	373	10.3637(8)	4.56	723	10.2435(11)	
1073	10.2743(9)	7.09	1073	10.4297(9)	7.19	573	10.3728(8)	5.32	773	10.2555(12)	
1173	10.2811(9)	7.69	1173	10.4245(8)	—	773	10.3855(8)	6.07	823	10.2567(13)	3.22
1273	10.2916(8)	8.28	1273	10.4131(9)	—	973	10.3983(7)	6.82	873	10.2588(24)	
T,K a, \mathring{A} $\alpha_a \cdot 10^6, K^{-1}$ c, \mathring{A} $\alpha_c \cdot 10^6, K^{-1}$				T,K	a,Å	$\alpha_a \cdot 10^6, \mathrm{K}^{-1}$	T,K a,Å				
TaWO _{5.5} (<i>I</i> 4)					TaWO _{5.5} ($Fd3m$) HTaWO ₆ · nH ₂ O				nH ₂ O		
298	24.518(4)	3.00		3.9283(9)	-6.40	298	10.3147(9)	1.53 298 10.386		10.3864	(9)*
473	24.533(4)	4.04		3.9260(9)	-7.71	373	10.3152(3)		323	10.4026	$(9)^{*}$
573	24.548(4)	4.63		3.9213(9)	-8.45	473	10.3161(10)		373	10.4189(9)*	
673	24.550(4)	5.23		3.9188(9)	-9.21	573	10.3186(9)		423	10.4235(7)**	
773	24.577(4)	5.82		3.9112(9)	-9.96	673	10.3208(9)		473	10.4267(8)**	
873	24.601(3)	6.41		3.9086(8)	-10.7	773	10.3212(9)		573	10.4351	$(8)^{**}$
973	24.617(3)	7.00		3.9052(9)	-11.5	873	10.3234(8)		673	10.4202	$(18)^{***}$
1073	24.627(4)	7.59		3.9014(10)	-12.2					10.3291(11)***	
1173	24.654(4)	8.18		3.8957(10)	-13.0				873	10.3235	(10)***

Таблица 3. Параметры элементарной ячейки и коэффициенты теплового расширения в зависимости от температуры для сложных вольфрамовых оксидов (в таблице обозначены области дегидратации: * — HTaWO₆ · H₂O, ** — HTaWO₆ · 0.5H₂O, *** — HTaWO₆

Как видно из рис. 6, на первых двух этапах дегидратации происходит увеличение параметра элементарной ячейки, обусловленное возникновением связей водород-кислород каркаса, что в свою очередь приводит к увеличению длин связей Та/W-O. На последней стадии дегидратации происходит резкое уменьшение параметра **a** с формированием "бескатионного" пирохлора, описанного выше.

С помощью дифференциального термического анализа и высокотемпературной рентгенографии определены температуры термораспада для некоторых пирохлоров, представленных в табл. 1, которые находятся в интервале 1073—1588 К, что характеризует их как термически стабильные соединения. Большинство соединений являются инконгруэнтно плавящимися. Для трех соединений выявлены кристаллические продукты распада (см. схемы распада)

 $KTaWO_6(cr) \to 5/7K_{1.4}Ta_{1.4}W_{0.6}O_6(cr) + 4/7WO_3(cr)$

 $\begin{aligned} \text{RbTaWO}_6(\text{cr}) &\rightarrow \text{Rb}_{0.27}\text{TaO}_{2.5}(\text{cr}) + (\text{Rb}_{0.73}\text{WO}_{3.5})(\text{liq}) \\ \text{RbNbWO}_6(\text{cr}) &\rightarrow \text{Rb}_{0.27}\text{TaO}_3(\text{cr}) + (\text{Rb}_{0.73}\text{WO}_3)(\text{liq}) \end{aligned}$

(здесь сг — кристалл, liq — жидкость). Для остальных соединений кристаллические продукты идентифицировать не удалось вследствие сложности их состава и отсутствия их в рентгенографических базах данных PDF-4 и FindIt.

Список литературы

- A. Knyazev, M. Maczka, N. Smirnova, L. Macalik, N. Kuznetsova, I. Letyanina. J. Solid State Chem. 182, 3003 (2009).
- [2] N.G. Chernorukov, A.V. Knyazev, N.N. Smirnova, N.Yu. Kuznetsova, A.V. Markin. Thermochimica Acta 470, 47 (2008).
- [3] A.V. Knyazev, M. Maczka, N.Yu. Kuznetsova, J. Hanuza, A.V. Markin, J. Therm. Anal. Calorim. 98, 843 (2009).
- [4] Н.Г. Черноруков, А.В. Князев, Н.Ю. Кузнецова, С.Н. Голубев. ЖНХ 536 8, 1397 (2008).
- [5] D. Babel, G. Pausewang, W. Viebahn. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organaische Chemie 22, 1219 (1967).
- [6] V. Bhat, J. Gopalakrishnan. J. Solid State Chem. 63, 278 (1986).
- [7] Р.И. Белоусов, С.К. Филатов. Физ. и хим. стекла **33**, 377 (2007).
- [8] С.К. Филатов. Высокотемпературная кристаллохимия. Теория, методы и результаты исследований. Недра, Л.: (1990). 288 с.
- [9] A.V. Knyazev, I.G. Tananaev, N.Yu. Kuznetsova, N.N. Smirnova, I.A. Letyanina, I.V. Ladenkov. Thermochimica Acta 499, 155 (2010).
- [10] D. Groult, J. Pannetier, B. Raveau. J. Solid State Chem. 41, 277 (1982).