от Оптические исследования биотканей: определение показателей поглощения и рассеяния

© К.М. Гираев, Н.А. Ашурбеков, О.В. Кобзев

Дагестанский государственный университет, Maxaчкала E-mail: nashurb@phys.dgu.ru

Поступило в Редакцию 29 апреля 2003 г.

Измерены диффузионное отражение, полное и коллимированное пропускание ткани слизистой оболочки желудка в норме методами интегрирующих сфер и однократного рассеяния в интервале длин волн 350–750 nm. Определены оптические показатели биоткани путем решения обратной задачи рассеяния по трехпотоковой модели Кубелки-Мунка и диффузионным методом. Дан сравнительный анализ полученных результатов.

Определение оптических показателей биоткани (коэффициента поглощения (μ_a), коэффициента рассеяния (μ_s) и фактора анизотропии (g)) является весьма трудоемкой задачей вследствие сложной структуры самой ткани и процессов взаимодействия фотонов с нею (биоткани относятся к сложным неоднородным поглощающим и многократно рассеивающим средам [1,2]). Современные методы определения оптических параметров биотканей предполагают решение обратной задачи рассеяния для различных теоретических моделей распространения света в биосредах (метод Монте-Карло [2,3], диффузионное приближение [4–6], метод потоковых моделей Кубелки–Мунка [2,7–9]).

Данная работа посвящена определению оптических параметров (μ_a, μ_s, g) биотканей методом трехпотоковой модели Кубелки-Мунка. С этой целью были определены спектры коллимированного пропускания $(T_C = F_C(z)/F_{C0})$, полного пропускания $(T_d = F_+(z)/F_{C0})$ и диффузного отражения от передней $(R_{d1} = F_{0-}/F_{C0})$ и задней границы $(R_{d2} = F_-(z)/F_{C0})$ ткани слизистой оболочки антрального отдела желудка. Здесь F_{C0} — падающий световой поток; $F_C(z)$ и $F_+(z)$ — соответственно прошедший коллимированный и диффузный потоки;

48

 F_{0-} и $F_{-}(z)$ — диффузные потоки, отраженные соответственно от передней и задней границы биоткани; z — толщина биоткани. Данные расчетов T_d , R_{d2} и T_C также использовались для расчета оптических коэффициентов методом диффузионного приближения, описанным в [5].

В качестве исследуемых объектов использовались нативные тканевые срезы слизистой оболочки антрального отдела желудка в норме размером $\sim 1 \,\mathrm{cm}^2$, толщиной $\sim 600\,\mu\mathrm{m}$ и $\sim 75\,\mu\mathrm{m}$, полученные при помощи криостатного микротона. Образцы помещались на предметные стекла и покрывались покровным стеклом с добавлением капли физиологического раствора. Края промежутка между стеклами заливали клеем для предотвращения высыхания ткани.

Оптические измерения проводились с использованием галогенной лампы КГМ-100, совмещенной с решетчатым монохроматором с обратной дисперсией 3.2 nm/mm, позволяющим линейно сканировать спектр в интервале длин волн 300–800 nm. Падающий свет модулировался с частотой ~ 150 Hz и, пройдя коллиматор и диафрагму, попадал на образец. Диаметр светового пятна на образце составлял ~ 2 mm. Для измерения T_d , $R_{d1,2}$ использовалась интегрирующая сфера диаметром 10 cm и размерами портов ~ 1.5 cm². Сигнал регистрировался при помощи ФЭУ и подавался на компьютер. При измерениях T_C сферу заменяли двумя диафрагмами: первая — сразу же после образца и вторая — перед ФЭУ. Погрешность измерения составила ~ 10%.

Экспериментальные данные $(T_d, R_{d1,2}, T_C)$ корректировались с учетом зеркального отражения на границе раздела воздух-стекло-биоткань по методике, описанной в [6]:

$$v_{Corr} = \frac{\left[\left(\frac{(1-r)^2}{r^2 J}\right)^2 + \frac{4}{r^2}\right]^{1/2} - \frac{(1-r)^2}{r^2 J}}{2}$$

где *J*, J_{Corr} — соответственно экспериментальные данные и скорректированные величины, соответствующие $(T_d, R_{d1,2}, T_C)$; $r = \frac{r_g + r_t - 2r_g r_t}{1 - r_g r_t}$, $r \approx 0.0501$, коэффициент зеркального отражения на границе воздух-стекло-биоткань, r_g и r_t — коэффициенты зеркального отражения на границе воздух-стекло и стекло-биоткань, соответственно равные ~ 0.0465 и ~ 0.004 [6]. Конечные данные диффузных измерений

4 Письма в ЖТФ, 2003, том 29, вып. 21

Ĵ

рассчитывались, используя следующие соотношения [5,6]:

$$R_{d1,2} = rac{R_{S1,2} - R_0}{R_{100} - R_0}$$
 и $T_d = rac{T_S - T_0}{T_{100} - T_0}$

где $R_{S1,2}$, T_S — данные диффузного отражения и пропускания, полученные с исследуемых образцов; R_{100} , T_{100} — данные диффузного отражения и пропускания, измеренные с предметного и покровного стекол. R_0 , T_0 — сигналы полученные с интегрирующей сферы с открытыми портами (R_0) и с закрытым сходным портом (T_0).

Методика определения оптических свойств биоткани при помощи трехпотовой модели Кубелки—Мунка достаточно подробно изложено в работе [7], в которой распределение света в среде представлено в виде дифференциально-разностных уравнений для трех потоков:

$$\begin{aligned} \frac{dF_C}{dz} &= -(\mu_a + \mu_s)F_C(z);\\ \frac{dF_+}{dz} &= -\left(2\mu_a + \frac{3}{4}\left(\mu_a + \mu_s(1-g)\right)\right)F_+(z)\\ &\quad + \frac{3}{4}\left(\mu_a + \mu_s(1-g)\right)F_-(z) + \frac{\mu_s}{4}\left(2 + 3g\right)F_C(z);\\ \frac{dF_-}{dz} &= -\left(2\mu_a + \frac{3}{4}\left(\mu_a + \mu_s(1-g)\right)\right)F_-(z)\\ &\quad + \frac{3}{4}\left(\mu_a + \mu_s(1-g)\right)F_+(z) + \frac{\mu_s}{4}\left(2 - 3g\right)F_C(z). \end{aligned}$$
(1)

Граничные условия для системы уравнений (1) определяются как

$$F_{C}(0) = (1 - r_{sp,c})F_{C0}; \qquad F_{+}(0) = (1 - r_{sp,c})R_{C0} + r_{id}F_{0-};$$

$$F_{+}(d) = (1 - r_{sp,c})F_{d+} + r_{id}F_{+}(d), \qquad (2)$$

где F_{d+} — диффузный поток у нижней границы биоткани; $r_{sp,c}$ — коэффициент френелевского отражения, равный ~ 0.004 [6]; $r_{id} \approx 0.25$, коэффициент внутреннего отражения от обеих границ биоткани, определенный как $r_{id} \approx -1.44n^{-2} + 0.71n^{-1} + 0.668 + 0.0636n$ [4], $n \approx 1.135$, показатель преломления на границе раздела биоткань-стекло [6].

Рис. 1. Оптические спектры ткани слизистой оболочки антрального отдела желудка в норме: I — полное пропускание T_d , 2 — диффузное отражение R_{d2} , 3 — коллимированное пропускание T_c .

В результате получаем три выражения, связывающие потоки в среде у передней и задней границ объекта, в которых искомые величины (μ_a , μ_s , g) являются функциями этих потоков. Конечное решение может быть получено путем численного решения обратной задачи системы уравнений (1) и (2), для чего в данной работе был использован метод Ньютона [10].

Характерные спектры полного пропускания, диффузного отражения и коллимированного пропускания, измеренные в диапазоне 350-750 nm, для ткани слизистой оболочки антрального отдела желудка представлены на рис. 1. Как видно из рисунка, для всех трех величин характерны провалы в области длин волн 400-425, ~ 550 и ~ 580 nm и увеличение вклада в красноволновой области спектра. Результат расчета оптических коэффициентов биоткани μ_a , μ_s и *g* методом трехпотоковой модели Кубелки–Мунка представлен на рис. 2. Анализ кривых показывает, что с ростом длины волны наблюдается существенное уменьшение μ_s , в то время как *g* меняется незначительно. Подобный факт свидетельствует об увеличении вклада рассеяния μ

Рис. 2. Спектры оптических показателей ткани слизистой оболочки антрального отдела желудка, рассчитанные методом трехпотоковой модели Кубелки-Мунка: I — коэффициент поглощения μ_a , 2 — коэффициент рассеяния μ_s , 3 — фактор анизотропии g.

в суммарный коэффициент рассеяния и уменьшения рэлеевского рассеяния от клеточных элементов (митохондрии, лизосомы, аппарат Гольджи, ядра и т.д.) и субмолекулярных агрегатов [1,2,5]. Форма спектрального контура μ_a во многом определяется полосами поглощения смеси окси- и деоксигемоглобина (~ 350, 422, 545 и 577 nm) [11], а также поглощением флуорохромов флавиновой и порфириновой групп (~ 390-420 nm) [12].

Используя данные T_d , R_{d2} и T_C в работе, также рассчитывались μ_a , μ_s и g этой же ткани при помощи диффузионной модели расчета оптических показателей. Сравнение данных, полученные при помощи двух методик, приводится в таблице. В частности, на некоторых длинах волн (350–550 nm) величина μ_a , полученная диффузионным методом, имеет несколько завышенные значения по сравнению с результатами трехпотоковой модели, что может быть объяснено различием используемых моделей распространения света в биотканях. Определение оптических свойств по трехпотоковой модели предполагает знание

Длина волны λ, nm	Коэффициент поглощения $\mu_a,{ m mm}^{-1}$	Коэффициент рассеяния $\mu_s, { m mm}^{-1}$	Фактор анизотропии g
350	1.27 (1.48)	58.38 (58.16)	0.94 (0.93)
400	1.9 (2.55)	57.11 (56.46)	0.93 (0.93)
450	0.94 (1.28)	49.39 (49.1)	0.95 (0.94)
500	0.47 (0.64)	42.16 (42.0)	0.96 (0.95)
550	0.525 (0.59)	38.98 (38.91)	0.95 (0.95)
600	0.48 (0.51)	33.95 (33.92)	0.95 (0.96)
650	023 (0.25)	28.83 (28.81)	0.95 (0.96)
700	0.16 (0.17)	24.3 (24.29)	0.945 (0.96)
750	0.13 (0.14)	21. 91 (21.89)	0.95 (0.95)

Значения коэффициентов μ_a, μ_s и g, рассчитанные трехпотоковым методом и диффузионным методом (значения в скобках) на различных длинах волн

коллимированного и диффузного пропускания, а также диффузного отражения от задней и передней стенок объекта, тогда как в диффузионной модели используются первые три коэффициента.

Таким образом, приведенные в работе результаты показывают, что оптические свойства биоткани, определенные методом трехпотоковой модели Кубелка—Мунка, представляют достаточно адекватную информацию и могут быть с успехом использованы в биомедицине или в спектроскопии, например, для определения степени искажения аутофлуоресценции.

Список литературы

- [1] Тучин В.В. // УФН. 1997. Т. 167. № 5. С. 517–539.
- [2] Tuchin V.V., Utz S.R., Yaroslavskii I.V. // Opt. Eng. 1994. V. 33. P. 3178-3176.
- [3] Qu J., MacAulay C., Lam S. et al. // Opt. Eng. 1995. V. 34. N 11. P. 3334–3343.
- [4] Groenhuis R.A.J., Ferverda H.A., Ten Bosch J.J. // Appl. Optics. 1983. V. 22. N 16. P. 2456–2462.
- [5] Karagiannes J.L., Zhang Z., Grossweiner B. et al. // Appl. Optics. 1989. V. 28.
 N 12. P. 2311–2317.
- [6] Maitland D.J., Walsh J.T., Prystowsky J.B. // Appl. Optics. 1993. V. 32. N 4. P. 586–591.

- [7] Van Gemert M.J.C., Schets G.A.C., Bishop M.S. et al. // Laser Life Sci. 1988.
 V. 1. N 2. P. 1–18.
- [8] Yoon G., Welch A.J., Motamedi M. et al. // IEEE J. Quantum Electron. 1987.
 V. QE-23. N 10. P. 1721–1733.
- [9] Van Gemert M.J.C., Jacques S.L., Sterenborg H.J.C.M et al. // IEEE J. Biomed. Eng. 1989. V. 36. N 12. P. 1146–1154.
- [10] Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984. 832 с.
- [11] Wolfbeiss O.S., Leiner M.J. et al. // Anal. Chim. Acta. 1985. V. 167. N 3. P. 203– 215.
- [12] Юденфренд С. Флуоресцентный анализ в биологии и медицине. Пер. с англ. М.: Мир, 1965. 468 с.