03;05;07 Аномалии распространения упругих волн через границу жидкость-магнитоакустический материал

© М.М. Карпук, Д.А. Костюк, Ю.А. Кузавко, В.Г. Шавров

Politechnica Koszalinska 75–620 ul. Raclavitskego-4, Koszalin, Poland Брестский государственный технический университет, Беларусь Институт радиотехники и электроники РАН, Москва

В окончательной редакции 3 апреля 2003 г.

Рассмотрено падение продольной акустической волны на плоскую границу жидкости с магнитоакустическим материалом, в качестве которого предложен антиферромагнетик с анизотропией типа "легкая плоскость", находящийся в области ориентационного фазового перехода по магнитному полю. Определены направления распространения и амплитуды отраженной, прошедших продольной и поперечной волн. Показана возможность эффективного управления с помощью поля углами преломления и преобразованием типов волн. Начиная с некоторых критических углов падения продольная, а впоследствии поперечная волна в магнетике становятся неоднородными и скользящими вдоль границы, а при большей степени близости к точке фазового перехода возможно их переизлучение в объем жидкости.

При прохождении упругой волны через границу раздела жидкой и твердой сред возникают отраженная и две прошедшие (продольная *LA* и поперечная *TA* волны, так как в жидкости возможно распространение только продольных волн [1]. С другой стороны, известно, что в магнитоупорядоченных веществах при подходе к точке ориентационного фазового перехода (ОФП) магнитоупругое (МУ) взаимодействие эффективно возрастает, обусловливая сильные перенормировки скоростей упругих волн [2]. Материалы, в которых этот эффект наблюдается, будем называть магнитоакустическими (МАМ). К таковым относятся антиферромагнетики с анизотропией типа "легкая плоскость" (АФЛП) в области ОФП по внешнему магнитному полю **H**, приложенному в базисной *xy*-плоскости кристалла (**H** || **y**, точка ОФП определяется условием H = 0). Например, экспериментально наблюдаемое уменьшение скорости поперечного звука в АФЛП гематита α -Fe₂O₃ составляло 50% [3].

86

Ранее в работе [4] было рассмотрено отражение магнитоакустических волн (MAB) от свободной поверхности АФЛП и продемонстрирована возможность эффективного полевого управления углом отражения и коэффициентом трансформации типов волн.

Пусть LA_1 падает из жидкости 1 (y > 0) в MAM 2 (y < 0) под углом α к нормали границы (y = 0). При отражении она преобразовывается только в LA_1 с тем же значением α угла отражения, но при прохождении во вторую среду она будет преобразовываться в LA_2 и LA_2 MAB с углами преломления β и γ соответственно.

Неучет спиновой системы в явном виде при таком рассмотрении оправдан при частотах $\omega \ll \omega_{me} = \varepsilon_{me}/\hbar$, где $\varepsilon_{me} = g\sqrt{2H_EH_{me}}$ — МУ щель в спектре спиновых волн, g — гиромагнитное отношение, $\varepsilon_{1\mathbf{k}} = \sqrt{\Theta_N^2(ak)^2 + \varepsilon_M^2 + \varepsilon_{me}^2}$ — энергия низкочастотных магнонов, $\varepsilon_M = g\sqrt{H(H + H_D)}$ — магнитная часть щели; $\xi = \frac{\varepsilon_{me}^2}{\varepsilon_{1\mathbf{k}}^2}$ — параметр МУ связи, H_E , H_D , H_{me} — соответственно эффективные поля обмена, Дзялошинского и магнитострикции, Θ_N — температура Нееля, \mathbf{k} волновой вектор, a — параметр решетки. Для рассматриваемого изотропного по упругим и МУ свойствам магнетика вблизи ОФП возникает анизотропия динамических упругих модулей ("смягчение" упругого модуля c_{xyxy}). Так, для гематита $H_E = 9.2 \cdot 10^6$ Ое, $H_D = 2.2 \cdot 10^4$ Ое, $H_{me} = 0.63$ Ое, $\omega_{me} = 34$ HHz, т. е. для всех экспериментально наблюдаемых ультразвуковых частот используемое приближение достаточно хорошо выполняется. Приведем используемые в дальнейшем выражения для скоростей поперечной и продольной с учетом МУ связи [5]:

$$\tilde{s}_{2l} = \sqrt{\frac{\mu_2}{\rho_2} (1 - \xi \cos^2 2\alpha)}, \quad \tilde{s}_{2l} = \sqrt{\frac{\lambda_2 + 2\mu_2}{\rho_2} (1 - n\xi \sin^2 2\alpha)}, \quad (1)$$

где ρ_2 — плотность, $n = \frac{\mu_2}{\lambda_2 + 2\mu_2} = \frac{s_{2l}^2}{s_{2l}^2}$, λ_2 , μ_2 — коэффициенты Ламэ МАМ. Для гематита $s_{2t} = 4200$ m/s, $s_{2l} = 6760$ m/s, $\rho_2 = 5290$ kg/m³; n = 0.386; для воды $s_{1l} = 1500$ m/s, $\rho_1 = 1000$ kg/m³.

При заданных направлении, поляризации и амплитуде падающей волны и при конкретных упругих свойствах сред необходимо определить направления распространения, поляризации и амплитуды отраженной и прошедших волн. Для решения задачи составляются волновые уравнения распространения волн в обеих средах и граничные условия

на поверхности раздела, имеющие в данном случае вид [1]:

$$T_{l,yy}^{I} + T_{l,yy}^{R} = T_{t,yy}^{T} + T_{l,yy}^{T}, \quad u_{l,iy}^{I} + u_{l,iy}^{R} = u_{t,iy}^{T} + u_{l,iy}^{T},$$
(2)

представляющих собой непрерывность упругих смещений u_i и нормальной к границе составляющей механических напряжений T_{yy} . Индексы *I*, *R*, *T* соответствуют падающей (продольной), отраженной (*LA*₁) и прошедшим (*LA*₂ и *TA*₂) волнам. В (2) индекс *i* принимает значения *x* и *y*.

Для упругих смещений в случае плоских гармонических падающей, отраженной и преломленных волн имеем:

$$\begin{pmatrix} u_{1l,x}^{l} \\ u_{1l,y}^{l} \end{pmatrix} = u_{1l0}^{I} \begin{pmatrix} \sin \alpha \\ -\cos \alpha \end{pmatrix} \exp\left[i(k_{1l}^{I}x\sin \alpha - k_{1l}^{I}y\cos \alpha - \omega_{1l}^{I}t)\right],$$

$$\begin{pmatrix} u_{1l,x}^{R} \\ u_{1l}^{R}, y \end{pmatrix} = u_{1l0}^{R} \begin{pmatrix} \sin \alpha \\ \cos \alpha \end{pmatrix} \exp\left[i(k_{1l}^{R}x\sin \alpha + k_{1l}^{R}y\cos \alpha - \omega_{1l}^{R}t)\right],$$

$$\begin{pmatrix} u_{2l,x}^{T} \\ u_{2l,y}^{T} \end{pmatrix} = u_{2l0}^{T} \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} \exp\left[i(k_{2l}^{T}x\sin \gamma - k_{2l}^{T}y\cos \gamma - \omega_{2l}^{T}t)\right],$$

$$\begin{pmatrix} u_{2l,x}^{T} \\ u_{2l,y}^{T} \end{pmatrix} = u_{2l0}^{T} \begin{pmatrix} \sin \beta \\ -\cos \beta \end{pmatrix} \exp\left[i(k_{2l}^{T}x\sin \beta - k_{2l}^{T}y\cos \beta - \omega_{2l}^{T}t)\right],$$
(3)

где u_0 и ω — амплитуда и частота волн. Из граничных условий (2) следует, что в любой момент времени $t \omega_{1l}^I = \omega_{1l}^R = \omega_{2l}^T = \omega_{2l}^T = \omega$ и в любой точке плоскости $y = 0 k_{1l,x}^I = k_{1l,x}^R = k_{2t,x}^T = k_{2l,x}^T = k_x$. Из вышесказанного следует, что направления распространения волн определяются соотношениями

$$\frac{\sin\alpha}{s_{1l}} = \frac{\sin\gamma}{\tilde{s}_{2t}(\gamma)} = \frac{\sin\beta}{\tilde{s}_{2l}(\beta)},\tag{4}$$

а также могут быть найдены на основании этого графически, исходя из геометрического построения поверхностей обратных фазовых скоростей всех волн, как это показано на рис. 1. Из уравнений (4) находятся

Рис. 1. Геометрическое построение волновых векторов для волн падающей, отраженной и преломленных на границе вода-гематит. Сплошная линия — *H* = 100 Oe, штриховая — *H* = 2000 Oe.

выражения для углов преломления LA2 и TA2 во второй среде:

$$\sin^{2}\beta = \frac{4\xi n \sin^{2}\alpha + b - \sqrt{(4\xi n \sin^{2}\alpha + b)^{2} - 16\xi n \sin^{4}\alpha}}{8\xi n \sin^{2}\alpha}, \quad (5)$$
$$\sin^{2}\gamma = \frac{4\xi \sin^{2}\alpha - c + \sqrt{(4\xi \sin^{2}\alpha - c)^{2} + 16\xi (1 - \xi) \sin^{4}\alpha}}{8\xi \sin^{2}\alpha}, \quad (6)$$

где $b = \frac{s_{1l}^2}{s_{2l}^2}$, $c = \frac{s_{1l}^2}{s_{2l}^2}$. При предельном переходе $\xi \to 0$ соотношения (5), (6) переходят в обычный закон Снеллиуса. Именно вследствие

этого анализа выбирался знак перед квадратными корнями в (5), (6). Однако следует отметить, что при значениях параметра $\xi > 1/(4n)$ (для границы вода-гематит $\xi \approx 0.648$ и H = 283 Oe) на поверхности обратных скоростей появляется вогнутость, что приводит к появлению второго решения для угла преломления β продольной волны (5), имеющего уже знак "+" при корне. Это решение соответствует преломленной продольной волне, групповая скорость которой направлена к границе раздела [6].

В жидкости практически всегда $s_{1l} < s_{2t}, s_{2l}$, и анализ формул (4)–(6) показывает, что существуют два критических угла падения α_{1cr} и α_{2cr} начиная с которых при $\alpha > \alpha_{1cr} = \arcsin b^{1/2} LA_2$ МАВ распространяется вдоль границы раздела сред, а затем при $\alpha > \alpha_{2cr} = \arcsin[c/(1-\xi)]^{1/2}$ то же происходит и для TA_2 МАВ. Тем самым пороговое значение угла полного внутреннего отражения LA_1 от границы при $\alpha > \alpha_{2cr}$ становится управляемым внешним магнитным полем [7].

Согласно (5) и (6), на рис. 2 показана зависимость углов преломления β и γ от угла падения α при разной степени близости к точке ОФП. Откуда видно, что изменением магнитного поля H можно добиться существенного управления углом преломления, особенно для возникающей в МАМ поперечной МАВ, скорость которой в точке ОФП стремится к нулю. Отметим также, что для угла падения $\alpha = \arcsin \sqrt{e/2} \approx 15^{\circ}$, когда $\gamma = 45^{\circ}$, угол преломления TA_2 не зависит от поля, а для LA_2 он может изменяться в широких пределах.

Из граничных условий (2) определяются после подстановки в них выражений (3) амплитудный коэффициент отражения падающей *LA*₁:

$$R_{ll} = \frac{u_{ll0}^R}{u_{ll0}^l} = \frac{A - B}{A + B},\tag{7}$$

а также амплитудные коэффициенты ее преобразования в прошедшие LA₂ и TA₂:

$$T_{ll} = \frac{u_{2l0}^T}{u_{1l0}^I} = \frac{C}{A+B}, \quad T_{lt} = \frac{u_{2t}^T}{u_{1l0}^I} = \frac{D}{A+B}.$$
 (8)

Здесь $A = [(\lambda_2 + 2\mu_2 \cos^2 \beta) \tilde{s}_{2l}^{-1} \cos \gamma - \mu_2 \tilde{s}_{2t}^{-1} \sin 2\gamma \sin \beta] \cos \alpha,$

 $B = \lambda_1 s_{1l}^{-1} (\sin \beta \sin \gamma + \cos \beta \cos \gamma) + \mu_2 \tilde{s}_{2l}^{-1} \sin \alpha \cos \beta \sin 2\gamma$

 $-(\lambda_2+2\mu_2\cos^2\beta)\tilde{s}_{2l}^{-1}\sin\alpha\sin\gamma],$

Рис. 2. Зависимость углов преломления β (*a*) и γ (*b*) соответственно *LA*₂ и *TA*₂ МАВ от угла падения α *LA*₁: *I* — *H* = 100 Oe (ξ = 0.840), *2* — *H* = 500 Oe (ξ = 0.507), *3* — *H* = 2000 Oe (ξ = 0.194).

$$C = 2\lambda_1 s_{1l}^{-1} \cos \alpha \cos \gamma + \mu_2 \tilde{s}_{2l}^{-1} \sin 2\gamma \sin 2\alpha,$$
$$D = -2\lambda_1 s_{1l}^{-1} \cos \alpha \sin \beta + (\lambda_2 + \mu_2 \cos^2 \beta) \tilde{s}_{2l}^{-1} \sin 2\alpha$$

При $\alpha > \alpha_{1cr}$ LA₂ MAB, распространяясь вдоль границы, является неоднородной: ее скорость \tilde{s}'_{2l} и глубина проникновения Λ_{2l} ($u_{2l} \sim e^{y/\Lambda_{2l}}$) в MAM начинают зависеть от угла падения α следующим образом:

$$\tilde{s}_{2l}' = \frac{s_{1l}}{\sin\alpha}, \qquad \Lambda_{2l} = \frac{s_{1l}}{\omega\sqrt{\sin^2\alpha - b}}.$$
(9)

При $\alpha > \alpha_{2cr}$ *TA*₂ MAB, распространяясь вдоль границы, также становится неоднородной, при этом \tilde{s}'_{2t} определяется выражением (9) с заменой $s_{2l} \rightarrow s_{2t}$, а

$$\Lambda_{2t} = \frac{s_{1l} s_{2t} \sqrt{1 - \xi \cos^2 2\gamma}}{\omega s_{2l} \sqrt{\sin^2 \alpha - b}}.$$
 (10)

Анализ выражений (5), (6) показывает, что из-за сильной деформации поверхностей обратных скоростей звука в МАМ пороговым образом при некотором $\xi > \xi^*$ возникает еще один новый эффект — излучение скользящей волны в объем. Критический угол $lpha_{C}lpha_{cr}=rcsin\sqrt{rac{b}{4\chi(1-\chi)}},$ где $\chi=(\xi n)^{1/2},$ и зависит от близости МАМ к точке его ОФП. Легко показать, что наименьшее значение α_{cr} возможно при $\chi = 0.5$. Параметр ξ равен $\xi = 1/(4n)$ и $\alpha_{cr} = \arcsin(b^{1/2})$. Таким образом, всегда $\alpha_{cr1} \leqslant \alpha_{cr} \leqslant \alpha_{cr1}$. При $\xi^* = [2 - b - 2(1 - b)^{1/2}]/4$ получаем $\alpha_{cr} = 90^\circ$, а при дальнейшем возрастании параметра МУ связи ξ критический угол уменьшается, достигая при $\xi = 1$ значения $\alpha_{cr} = 19.8^{\circ}$ для структуры вода-гематит. При $\alpha = \alpha_{cr}$ в выражении (5) подкоренное выражение зануляется и при $\alpha > \alpha_{cr}$ становится отрицательным. Вследствие этого $\sin\beta$ формально становится комплексным, а это физически означает уход скользящей волны от границы в объем жидкости с затуханием, возрастающим по мере удаления от границы. Отметим, что данное затухание является бездиссипативным и характеризует структуру возникшего нового колебательного процесса, также сосредоточенного вблизи границы.

Согласно (7), (8), на рис. 3 представлены расчетные зависимости коэффициентов T_{ll} , T_{lt} от угла падения α для структуры вода-гематит. Согласно им, при $\alpha = \alpha_{1cr} = 14.2^{\circ}$ для LA_2 MAB $\beta = 90^{\circ}$, а при

Рис. 3. Зависимость модулей коэффициентов прохождения T_{ll} LA (a) и преобразования T_{lt} в TA_2 (b) на границе вода-гематит от угла падения LA₁ α : I - H = 100 Oe, 2 - H = 500 Oe, 3 - H = 2000 Oe.

 $\alpha = \alpha_{2cr} = 24.1^{\circ}$ ($\xi = 0$) для TA_2 МАВ $\gamma = 90^{\circ}$. Отметим, что при $\alpha \approx 90^{\circ}$ наблюдается резкое возрастание амплитуды отраженной волны, что объясняется неоднородностью LA_2 и TA_2 в области $\alpha > \alpha_{1cr}$, связанной с локализацией их энергии непосредственно вблизи границы. В интервале углов падения $\alpha_{cr1} \leq \alpha \leq a_{cr}$ наблюдается уменьшение

коэффициентов отражения R_{ll} , прохождения T_{ll} и преобразования T_{lt} , что объясняется перекачкой энергии LA_1 в вытекающую волну с последующим переизлучением ее в объем. Таким образом, инициированная МУ взаимодействием в МАМ гематите в области ОФП сильная анизотропия упругости кристалла обусловливает возникновение аномалий полного внутреннего отражения LA, скользящих и вытекающих приграничных волн и их магнитоуправляемое критическое поведение, экспериментальное обнаружение которых реально в отличие от невозможности подобных эффектов в силу малой анизотропии обычных акустических кристаллов.

Авторы благодарны Белорусскому республиканскому фонду фундаментальных исследований и Российскому фонду фундаментальных исследований (гранты T02M–137, Ф02–076Р и 02–02–81030 Бел2002–а) за частичную финансовую поддержку выполненных исследований.

Список литературы

- [1] *Дьелесан Э., Руайе Д.* Упругие волны в твердых телах. М.: Наука, 1982. 424 с.
- [2] Туров Е.А., Шавров В.Г. // УФН. 1983. Т. 140. № 3. С. 429–462.
- [3] Андрющак Е.А., Евтихиев Н.Н., Погожев С.А., Преображенский В.Л. // Акустический журнал. 1981. Т. 27. № 2. С. 170–178.
- [4] Кузавко Ю.А., Шавров В.Г. // Акустический журнал. 1993. Т. 39. № 6. С. 1088–1092.
- [5] *Kuzavko Yu., Roth H., Golovko V.* Proceedings of Workshop on Design Methodologies for Signal Processing. Zakopane, Poland, 1996. P. 131–135.
- [6] Балакирев М.К., Гилинский И.А. Волны в пьезокристаллах. Новосибирск: Наука, 1982. 240 с.
- [7] Kuzavko Y.A., Karpuk M.M. Acoustic waves reflection and refraction on a liquidmagnetoacoustic material boundary // Book of abstracts of 17th International Congress on Acoustics. Rome, September 2–7, 2001.