06 Температурная зависимость морфологии ансамблей нанокластеров в системе Ge/Si(100)

© В.Г. Дубровский, В.М. Устинов, А.А. Тонких, В.А. Егоров, Г.Э. Цырлин, Р. Werner

Институт аналитического приборостроения РАН, С.-Петербург Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург Max-Planck Institut für Mikrostrukturphysik, Halle, Germany

В окончательной редакции 18 февраля 2003 г.

Представлены результаты теоретических расчетов и исследований методом атомно-силовой микроскопии зависимости морфологических свойств ансамблей hut-кластеров в гетероэпитаксиальной системе Ge/Si(100) от температуры поверхности. Показано, что при увеличении температуры поверхности от 420 до 500°С латеральный размер нанокластеров с квадратным основанием, выращенных при одинаковой скорости роста Ge (0.0345 монослоя в секунду), при заполнении 6.2 монослоя увеличивается от 12 до 20 nm, а поверхностная плотность падает от $5.6 \cdot 10^{10}$ до $1.5 \cdot 10^{10}$ 1/сm². Полученные результаты показывают достаточно хорошее совпадение предсказаний кинетической модели с экспериментальными данными.

Процессы формирования ансамблей когерентных островков в полупроводниковых гетероэпитаксиальных системах представляют большой интерес как с фундаментальной точки зрения, так и в связи с их использованием для создания плотных массивов квантовых точек [1]. Пространственное ограничение носителей заряда по трем направлениям приводит к атомно-подобному спектру энергетических состояний квантовых точек, что делает перспективным их применение в оптоэлектронике. За счет эффектов размерного квантования длина волны светоизлучающих устройств с активной областью на основе гетероструктур с квантовыми точками зависит от латерального размера островков, в то время как поверхностная плотность определяет интенсивность излучения. Это объясняет актуальность исследования зависимости морфологии ансамблей квантовых точек от технологически контролируемых параметров их выращивания [2]. Целью настоящей

41

42

работы является исследование зависимости латерального размера и поверхностной плотности квантовых точек от температуры на начальном этапе роста. В качестве модельной была выбрана система Ge/Si (100), перспективная с точки зрения создания оптоэлектронных устройств на кремниевой базе [3].

Кинетическая модель формирования когерентных островков на начальном этапе роста [4,5] дает следующую качественную картину процесса роста. Двумерная поверхность стабильна при толщине смачивающего слоя, меньшей равновесной толщины, которая определяется в соответствии с критерием Мюллера-Керна [6]: $h_{eq} = k_0 \ln[\Phi/h_0(1-z(\theta))\lambda \varepsilon_0^2]$. Здесь k_0 — коэффициент релаксации сил притяжения к подложке, Ф — плотность смачивающей энергии на поверхности подложки, $z(\theta)$ — зависящая от контактного угла θ относительная релаксация упругой энергии в островке [7], λ — модуль упругости депозита и ε_0 — рассогласование решеток. Максимальная интенсивность нуклеации островков наблюдается при максимальной толщине смачивающего слоя $h_c = (1 + \xi_*)h_{eq}$ в момент времени $t_* = \xi_* t_{eq}$, где $t_{eq} = h_{eq}/V$ — время роста равновесного смачивающего слоя, V — скорость роста в монослоях в секунду (ML/s) и $\xi_* = 0.24 A^{3/2} / B \ln^{1/2} Q$ — максимальная степень метастабильности. Константы $A \equiv (\sigma(\theta)/\cos\theta - \sigma(0))\alpha^2(\theta)l_0^2/k_BT$ и $B \equiv (h_{eq}/k_0)(1-z(\theta))\lambda \varepsilon_0^2 h_0 l_0^2/k_B T$ определяются соответственно отношением дополнительной поверхностной энергии островка и разности упругой энергии в островке и в смачивающем слое к тепловой энергии, $\sigma(\theta)$ — плотность поверхностной энергии для боковой грани, $\sigma(0)$ – плотность поверхностной энергии в плоскости поверхности подложки, l_0 — расстояние между атомами на поверхности, T — температура поверхности, $\alpha(\theta) \equiv (6h_0 \cot \theta/l_0)^{1/3}$ — геометрический фактор и h_0 – высота монослоя (МС). Если основным механизмом роста островков является диффузионный поток материала из смачивающего слоя в островки [4,5], контрольный параметр $Q = t_{eq}/\tau$, где $\tau = 3l_0^2/8\alpha B\nu D(T)$, D(T) — зависящий от температуры коэффициент объемной диффузии в смачивающем слое, *v* — параметр обрезания потенциала упругих сил. Температурная зависимость коэффициента диффузии аппроксимируется в аррениусовской форме $D(T) = D_0 \exp(-T_D/T)$, где T_D есть характерная диффузионная температура. Приведенные выражения записаны для островков пирамидальной формы с квадратным основанием длины L и отношением высоты к латеральному размеру $\beta = \tan \theta / 2$.

Нуклеация островков практически завершается при $t = t_* + \Delta t$, где $\Delta t = (0.57/\ln Q)t_*$ есть продолжительность стадии нуклеации. По окончании стадии нуклеации наступает стадия релаксации по размерам островков, на которой поверхностная плотность остается постоянной, а средний размер островков растет по закону

$$\frac{t - t_*}{t_R} = \ln\left[\frac{(1 + l + l^2)^{1/2}}{1 - l}\right] - \sqrt{3}\arctan\left(\frac{2l + 1}{\sqrt{3}}\right) + \frac{\pi}{2\sqrt{3}},$$
$$t_* \le t \le 3t_R.$$
(1)

Здесь $l(t) = L(t)/L_R$, L(t) — средний латеральный размер и L_R — средний латеральный размер по окончании стадии релаксации по размерам, определяемый согласно

$$L_R = 0.2\alpha l_0 \frac{A^{3/2}}{B} \frac{Q^{1/2}}{\ln^{2/3} Q}.$$
 (2)

Характерное время релаксации по размерам $t_R = (0.47/\ln^{1/3} Q)t_*$. Поверхностная плотность островков *N*, сформированных на стадии нуклеации, дается выражением

$$N = \frac{30}{l_0^2} h_{eq} \frac{B^2}{A^3} \frac{\ln^{3/2} Q}{Q^{3/2}}.$$
 (3)

Приведенные формулы справедливы при выполнении сильного неравенства $F = (5/2) \ln Q \gg 1$, обеспечивающего применимость макроскопического описания процесса нуклеации и временну́ю иерархию $\Delta t \ll t_R \ll t_*$ [4]. Большой параметр теории F есть активационный барьер нуклеации при максимальной толщине смачивающего слоя [4,5]. Во всех приведенных выражениях время отсчитывается с момента достижения равновесной толщины h_{eq} .

Ростовые эксперименты проводились на установке молекулярнопучковой эпитаксии Riber SIVA (Франция). Образцы Ge/Si (100) нанокластеров выращивались при четырех различных температурах $T = 420^{\circ}C(1)$, $450^{\circ}C(2)$, $470^{\circ}C(3)$ и $500^{\circ}C(4)$. Техника ростовых экспериментов и характеризации структур подробно описаны в [3]. Скорость роста германия во всех экспериментах была равна 0.0345 ML/s. Момент прерывания роста соответствовал напылению 6.2 MC общего количества германия. Время нанесения при указанной скорости

500 nm

Рис. 1. Изображение АСМ для образца, выращенного при 450°С. Область сканирования 500 × 500 nm. Стороны изображений параллельны кристаллографическим направлениям [011] и [0–11].

роста составило 180 s. Выращенные образцы исследовались методом атомно-силовой микроскопии (ACM) на установке Digital Instruments Inc. (США).

Типичное ACM изображение образца приведено на рис. 1. Анализ ACM изображений показывает, что нанокластеры, выращенные при температуре 420°C, имеют форму пирамиды с приблизительно квадратным основанием. При повышении температуры в ACM изображениях проявляются две фракции кластеров — с квадратным основанием и с прямоугольным основанием, удлиненным в направлении оси x (ось x направлена вдоль [010], ось y — вдоль [001]). Отношение L_x/L_y для удлиненных кластеров варьируется в пределах от 1.74

		Поверх-		Поперечные размеры, пт					
Образец	T,°C	ностная	Высота,	Квадратные кластеры		Прямоугольные			
		плотность	nm			кластеры			
		$ imes 10^{10} cm^{-2}$		L_x	L_y	L_x	L_y		
1	420	5.6	1.3	11.8	13.0	_	_		
2	450	3.9	2.5	14.2	15.3	24.7	11.8		
3	470	1.1	3.0	20.2	17.9	33.1	19.0		
4	500	1.5	5.0	20.2	21.3	53.1	20.1		

Таблица 1. Экспериментальные данные измерений ACM геометрических параметров нанокластеров Ge/Si (100)

Таблица 2. Результаты расчетов для основных характеристик процесса формирования нанокластеров

<i>Т</i> , °С	θ , grad	h _{eq} , MC	h_c , MC	t _{eq} , s	<i>t</i> ∗, s	<i>t</i> ₀ , s	$\Delta t,$ s	$t_R,$ s	F	L _R , nm	L ₀ , nm	N , $1/\mathrm{cm}^2$
420	13	2.7	5.7	77	95	103	7.1	23	19	25	11.7	$5.7\cdot 10^{10}$
450	19	2.6	5.5	74	90	106	6.5	21	20	26	17.5	$4.0\cdot10^{10}$
470	18	2.4	5.5	74	90	106	6.2	21	20	28	19.6	$3.3\cdot10^{10}$
500	26	2.4	5.5	69	94	111	6.4	22	21	31	21.3	$1.7\cdot 10^{10}$

Размер $L_0 = L(t_0)$ и время t_0 соответствуют среднему размеру при 6.2 MC нанесенного материала.

до 2.64. Для всех четырех образцов фракция кластеров с квадратным основанием является доминирующей. Контактный угол θ увеличивается с увеличением температуры. Средний размер кластеров обеих фракций при 6.2 МС существенно увеличивается с повышением температуры. Полученные в результате АСМ измерений экспериментальные данные по среднему латеральному размеру и поверхностной плотности нано-кластеров представлены в табл. 1. Погрешность измерения размеров не превосходит 5%.

Вычисления проводились для кластеров с квадратным основанием при четырех различных температурах для следующих значений параметров: $\lambda = 1.27 \cdot 10^{12} \text{ dyn/cm}^2$; $\varepsilon_0 = 0.042$, $h_0 = 0.145 \text{ nm}$,

Рис. 2. Экспериментальная (1) и теоретическая (2) температурная зависимость среднего латерального размера нанокластеров Ge/Si (100).

 $l_0 = 0.395 \text{ nm}, \Phi = 450 \text{ erg/cm}^2, \sigma(0) = 800 \text{ erg/cm}^2, \sigma(\theta) = 830 \text{ erg/cm}^2, k_0 = 0.68, \nu = 10, T_D = 5000 \text{ K и } D(T = 470^{\circ}\text{C}) = 1.8 \cdot 10^{-13} \text{ cm}^2/\text{s}.$ Значения контактного угла выбирались на основе измеренных значений отношения высоты к латеральному размеру при различных температурах. Зависимость $z(\theta)$ рассчитывалась по данным работы [7]. Средний размер нанокластеров рассчитывался на основе выражений (1) и (2) в момент времени, соответствующий нанесению 6.2 MC германия. Поверхностная плотность рассчитывалась по формуле (3). Результаты теоретических расчетов для основных характеристик процесса формирования островков приведены в табл. 2.

Экспериментальные и расчетные значения для среднего размера и поверхностной плотности нанокластеров Ge/Si (100) приведены на рис. 2 и 3. Видно, что теоретические и экспериментальные результаты для среднего размера и плотности практически совпадают в трех точках (T = 420, 470 и 500°C для среднего размера и T = 420, 450 и 500°C для среднего размера и T = 450°C для среднего

Рис. 3. Экспериментальная (1) и теоретическая (2) температурная зависимость поверхностной плотности нанокластеров Ge/Si (100).

размера и $T = 470^{\circ}$ С для плотности несколько выпадают из полученных монотонных зависимостей. Это может быть связано, в частности, с наличием фракции островков с удлиненным основанием, а также с недостаточной площадью сканирования при АСМ измерениях.

В заключение, представленные результаты демонстрируют рост среднего размера и уменьшение поверхностной плотности нанокластеров Ge/Si(100) при увеличении температуры, а также существенно кинетический характер процесса формирования нанокластеров на начальном этапе роста. Предсказания кинетической модели достаточно хорошо соответствуют экспериментальным данным. Полученные результаты открывают путь к управлению параметрами наноструктур Ge/Si (100) путем соответствующего выбора температуры поверхности.

Данная работа выполнена при частичной финансовой поддержке научными программами Минпромнауки и технологии РФ.

Г.Э. Цырлин выражает признательность Alexander von Humboldt Stiftung.

Список литературы

- [1] *Bimberg D., Grundmann M., Ledentsov N.N.* Quantum dot heterostructures. Chichester: John Wiley & Sons, 1998.
- [2] Пчеляков О.П., Болховитянов Ю.Б., Двуреченский А.В., Соколов Л.В., Никифоров А.И., Якимов А.И., Фойхтлендер Б. // ФПП. 2000. Т. 34. С. 1281.
- [3] Цырлин Г.Э., Егоров В.А., Соколов Л.В., Werner P. // ФТП. 2002. Т. 36. С. 1379.
- [4] Dubrovskii V.G., Cirlin G.E., Ustinov V.M. // Phys. Rev. B (submitted).
- [5] Кукушкин С.А., Осипов А.В., Shmidt F., Hess P. // ФТП. 2002. Т. 36. С. 1177.
- [6] Müller P., Kern R. // Appl. Surf. Sci. 1996. V. 102. P. 6.
- [7] Ratsch C., Zangwill A. // Surf. Sci. 1993. V. 293. P. 123.