07;12

Модернизация люминесцентного сканирующего конфокального микроскопа для наблюдения единичных квантовых систем с произвольной ориентацией

© С.В. Бойченко, Е.Ф. Мартынович

Иркутский филиал Института лазерной физики СО РАН E-mail: ste89@yandex.ru

Поступило в Редакцию 8 ноября 2011 г.

Предлагается распределение светового поля возбуждающего лазерного луча, входящего в объектив люминесцентного конфокального сканирующего микроскопа, при котором сфокусированный лазерный луч в процессе сканирования изображений способен возбуждать все поглощающие диполи произвольной ориентации примерно с одинаковой эффективностью. Показано расчетным путем, что при сканировании отношение максимальных интенсивностей наименее и наиболее удачно ориентированных диполей составляет 47%. Проводится аналогичный расчет для других распределений светового поля на входе, и их эффективность сравнивается с эффективностью предлагаемого поля.

В некоторых приложениях возникает необходимость возбуждать свечение всех люминесцирующих частиц, находящихся на исследуемом участке. Одним из наиболее важных приложений такого рода является подсчет люминесцентных меток в медико-биологических [1] и геномных [2] исследованиях. К числу эффективных методов определения следовых концентраций примесных атомов, молекул и точечных дефектов относится метод прямого подсчета их числа с помощью конфокальной люминесцентной сканирующей микроскопии [3]. Многие квантовые системы (молекулы, центры окраски и др.) поглощают и испускают свет как дипольные осцилляторы. Следовательно, в данном случае возникает необходимость возбуждать центры свечения с произвольной ориентаций дипольного момента перехода. Наша работа посвящена расчету устройства, преобразующего световое поле лазерного луча

72

Рис. 1. Оптическая схема объектива конфокального микроскопа. К расчету поля в фокальном объеме.

перед входом в объектив конфокального микроскопа таким образом, чтобы в фокальной плоскости в процессе сканирования эффективно возбуждались электрические диполи произвольной ориентации.

Определим связь между световым полем лазерного луча, входящего в объектив конфокального микроскопа, и полем в фокальном объеме. Оптическая схема, для которой производится расчет, приведена на рис. 1. В объектив конфокального микроскопа (изображенный в виде прямоугольника) подается цилиндрический лазерный луч диаметром D с плоским волновым фронтом. Предполагается, что объектив удовлетворяет условию синусов [4], т. е поверхностью пересечения входного и выходного лучей является мнимая сфера радиуса f (f — фокусное расстояние объектива). Вследствие этого амплитуды колебаний электрического вектора $\mathbf{E}'(\theta, \varphi)$ сферической волны на выходе из объектива связаны соотношением

$$E'(\theta, \varphi) = E_0(\theta, \varphi) \sqrt{\cos \theta}, \tag{1}$$

 θ и ϕ — полярный и азимутальный углы, задающие координаты точки на мнимой сфере пересечения входного и выходного лучей. Поле в

фокальном объеме $\mathbf{E}(x, y, z)$ вычисляется в соответствии с принципом Гюйгенса—Френеля по следующей формуле [5]:

$$\mathbf{E}(x, y, z) = A \int_{0}^{\theta_{\max}} \int_{0}^{2\pi} \sin \theta e^{ikS(\theta, \varphi; x, y, z)} \mathbf{E}'(\theta, \varphi) d\theta d\varphi,$$
(2)

A — постоянная, θ_{max} — апертурный угол объектива, x, y и z — координаты точки фокального объема (начало отсчета принято в геометрическом фокусе объектива). S представляет собой расстояние между точкой на мнимой сфере и точкой в фокальном объеме:

$$S(\theta, \varphi; x, y, z)$$

= $\sqrt{f^2 - 2f \left[\sin \theta (x \cos \varphi + y \sin \varphi) + z \cos \theta\right] + x^2 + y^2 + z^2}.$ (3)

Направляющий вектор напряженности $\mathbf{E}(\theta, \varphi)$ получается из направляющего вектора напряженности $\mathbf{E}_0(\theta, \varphi)$ посредством поворота, задаваемого матрицей:

$$\hat{K}(\theta,\varphi) = \begin{pmatrix} \cos\theta\cos^2\varphi + \sin^2\varphi & \sin\varphi\cos\varphi(\cos\theta - 1) & -\sin\theta\cos\varphi\\ \sin\varphi\cos\varphi(\cos\theta - 1) & \cos\theta\sin^2\varphi + \cos^2\varphi & -\sin\theta\sin\varphi\\ \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \end{pmatrix}.$$
(4)

Таким образом, учитывая соотношение (1), можем записать:

$$\mathbf{E}'(\theta,\varphi) = \hat{K}(\theta,\varphi)\mathbf{E}_0(\theta,\varphi)\sqrt{\cos\theta}.$$
 (5)

На основании (5) и (2) находим связь между распределением светового поля в фокальном объеме $\mathbf{E}(x, y, z)$ и полем входного луча $\mathbf{E}_0(\theta, \varphi)$:

$$\mathbf{E}(x, y, z) = A \int_{0}^{\theta_{\max}} \int_{0}^{2\pi} \sin \theta \sqrt{\cos \theta} e^{ikS(\theta, \varphi; x, y, z)} \hat{K}(\theta, \varphi) \mathbf{E}_{0}(\theta, \varphi) d\theta d\varphi.$$
(6)

Теперь, задавая распределение поля во входном луче, мы можем менять поле в фокальном объеме желаемым образом. Все дальнейшие расчеты проводятся для объектива $60 \times$, NA = 1.2 (UPlanSApo, водно-иммерсионный), $\theta_{\rm max} = 1.12$, f = 4.8 mm, возбуждение — 530 nm.

Как упоминалось выше, наша цель состоит в том, чтобы в процессе сканирования эффективно возбуждались электрические диполи произвольной ориентации. Следовательно, требуется сделать распределение светового поля в фокальной плоскости таким, чтобы максимальные значения интенсивности люминесценции исследуемых центров не зависели (или по крайней мере зависели слабо) от ориентации излучающих и поглощающих диполей. Мы будем считать, что выполняется приближение Франка–Кондона [6], т.е. излучающий и поглощающий диполи сонаправлены. Вероятность возбуждения диполя, определяемого единичным вектором **d**, расположенного в точке (x, y) фокальной плоскости, определяется выражением [7]:

$$P_{ex}(x, y; \theta_d, \varphi_d) \propto \left| \mathbf{E}(x, y, 0) \mathbf{d}(\theta_d, \varphi_d) \right|^2, \tag{7}$$

 θ_d , φ_d — углы, задающие направление **d**. Интенсивность люминесценции такого диполя в конфокальной схеме при сканировании дается формулой:

$$I(\theta_d, \varphi_d; x, y) \propto P_{ex}(x, y, ; \theta_d, \varphi_d) \iint_{\Omega_0} J(\theta_d, \varphi_d; x, y; \theta, \varphi) \sin \theta d\theta d\varphi, \quad (8)$$

 Ω_0 — телесный угол, охватываемый объективом, J — интенсивность излучения диполя в направлении наблюдения (θ, φ). Так как размеры фокального объема (области, где **E**(x, y, z) отличается от нуля) меньше параметра f на 3 порядка, мы пренебрегаем зависимостью J от линейных координат. Интегрируя по Ω_0 , получаем:

$$I(\theta_d, \varphi_d; x, y) \propto (1 - 0.25 \cos 2\theta_d) \left| \mathbf{E}(x, y, 0) \mathbf{d}(\theta_d, \varphi_d) \right|^2.$$
(9)

Теперь нужно найти распределение $E_0(\theta, \varphi)$, при котором максимальное по x и y значение $I(\theta_d, \varphi_d; x, y)$ является медленно меняющейся функцией ориентации диполя.

Прямой путь решения поставленной задачи заключается в том, чтобы: 1) найти поле $\mathbf{E}(x, y, 0)$, дающее одинаковые максимальные значения $I(\theta_d, \varphi_d; x, y)$ для любых (θ_d, φ_d) ; 2) найти $\mathbf{E}(\theta, \varphi)$, зная $\mathbf{E}(x, y, 0)$ по формуле, обратной (6). Этот путь имеет два существенных недостатка: во-первых, это сложная математическая задача, а во-вторых, функция $\mathbf{E}_0(\theta, \varphi)$, найденная таким образом, может оказаться чрезмерно

Рис. 2. a — поле в поперечном сечении лазерного луча, входящего в объектив конфокального микроскопа, до преобразования. b, c — компоненты устройства, преобразующего поле E_0 в поле (10). Компоненты устройства ставятся последовательно на пути луча.

сложной для технической реализации. Поэтому мы отказались от него и избрали другой, менее строгий, но более простой и действенный путь: перебор с изучением эффективности легко реализуемых и при этом способных из общих соображений дать желаемый результат распределений $\mathbf{E}_0(\theta, \varphi)$.

Наилучшего результата удалось добиться для радиально-поляризованного света [8] и неоднородного циркулярно-поляризованного, предложенного нами:

$$\mathbf{E}_{0}^{ic}(\theta, \varphi) = C \begin{pmatrix} \operatorname{sgn}(\cos \varphi) \\ i \operatorname{sgn}(\sin \varphi) \\ 0 \end{pmatrix}.$$
(10)

Одно из возможных устройств для технической реализации распределения (10) приведено на рис. 2. Оно состоит из оптически однородной фазовой пластинки (рис. 1, *b*) и пластинки из положительного двулучепреломляющего кристалла с главной плоскостью, нормальной плоскости рисунка и направленной по оси *x* (рис. 1, *c*). Поле лазерного луча до преобразования линейно-поляризовано (рис. 1, *a*) и равно $\mathbf{E}_0 e^{i\omega t}$, где ω — частота лазерного излучения; амплитуда поля неизменна в пределах сечения луча. После преобразования получается поле (10) с $C = E_0/\sqrt{2}$.

Рис. 3. Рассчитанные конфокальные люминесцентные сканированные изображения центров с различной ориентацией дипольных моментов перехода. Интенсивность в максимумах *I*_{max} дана в условных единицах.

Рассчитанные люминесцентные сканированные изображения центров с различной ориентацией дипольных моментов перехода приведены на рис. 3. Диполи с ориентацией (75.5°, 0) и (75.5°, 90°) обладают самой высокой интенсивностью в максимуме, которая достигается в данной схеме построения изображений, т.е. принадлежат к числу диполей, ориентированных наиболее удачно. На рис. 3 интенсивность в их максимумах принята за единицу, и все изображения нормированы по ней. В качестве примера наименее удачно ориентированного диполя приведен диполь с ориентацией (90°, 45°). Введем параметр ε , характеризующий эффективность схемы построения изображений, определяемый как отношение максимальных интенсивностей наименее и наиболее удачно ориентированных диполей. В данном случае $\varepsilon = 47\%$. Отметим, что сканированные изображения диполей, ориентированных по $x(90^\circ, 0)$, по $y(90^\circ, 90^\circ)$ и по z(0, 0), с точностью до коэффициентов совпадают с распределениями интенсивностей $I_x(x, y) = |E_x(x, y, 0)|^2$, $I_y(x, y) = |E_y(x, y, 0)|^2$ и $I_z(x, y) = |E_z(x, y, 0)|^2$, соответственно. Стоит отметить, что, получая экспериментально подобные изображения, можно определять ориентацию дипольного момента перехода [9].

В таблице приведены параметры, характеризующие световое поле в фокальной плоскости, для различных распределений поля на входе. Как говорилось выше, наибольшие значения характеристики эффективности наблюдения ε получаются для поля (10) и радиально-поляризованного света. Причем для радиальной поляризации значение этого параметра больше, чем для поля (10), и менее заметны вторичные максимумы (здесь мы не описываем этот эффект количественно). Однако изображения для радиальной поляризации получаются более широкими. Нужно также иметь в виду, что радиально-поляризованный свет более сложен в технической реализации, чем поле (10).

Таким образом, нами предложено и теоретически обосновано сравнительно простое в технической реализации и вместе с тем достаточно эффективное устройство, с помощью которого можно наблюдать одиночные квантовые системы, излучающие и поглощающие как дипольные осцилляторы, с произвольной ориентацией дипольного момента перехода. Также с помощью этого устройства можно определять ориентацию дипольного момента перехода изолированных дипольных излучателей, что может найти применение не только в медицине и биологии, но и в таких научных направлениях, как квантовая оптика [10], фотоника и материаловедение.

Зависимость распределения поля в фокальной плоскости от распределения поля во входном лазерном луче

	Компонента светового поля в фо- кальной плоскости	Характеристики светового поля в фокальной плоскости						
Распределение светового поля на входе		Кол-во макси- мумов	Положе симум х	ние мак- ов, µт	$\frac{FW}{\mu}$	HM, m Δy	Максималь- ная интен- сивность, нормиро- ванная по <i>I_x</i>	ε, %
Поле (10) — не- однородно цир- кулярно-	$I_x(x, y)$ $I_y(x, y)$	2 2	$0.24 \\ -0.24 \\ 0$	0	0.29 0.30	0.30 0.29	1	47
поляризованный свет	$I_z(x, y)$	1	0	$-0.24 \\ 0$	0.27	0.27	0.9	
Радиально- поляризованный	$I_x(x, y)$	2	$0.26 \\ -0.26$	0	0.28	0.44	1	
свет, диаметр входного луча	$I_y(x, y)$	2	0	$0.26 \\ -0.26$	0.44	0.28	1	60
7.6 mm	$I_z(x, y)$	1	0	0	0.32	0.32	1.7	
Свет линейно- поляризованный в направлении <i>х</i>	$I_x(x, y)$ $I_y(x, y)$ $I_z(x, y)$	1	000 Пренебрежимо мала 0.22000.			32 0.36	1 0.005 0.15	0.3
*			-0.22					
Свет циркулярно- поляризованный	$I_x(x, y) I_y(x, y)$	1	0 0		0.32		1	9
по х и у	$I_z(x, y)$	∞	Кольцо радиуса 0.22 µm		0.22		0.15	

Исследование выполнено по программам ОФН РАН (проект ОФН III.9.7.1) и СО РАН-НАН Беларуси (проект № 16).

Список литературы

- [1] Jiang D., Wang L., Jiang W. // Anal. Chim. Acta. 2009. V. 634. N 1. P. 83-88.
- [2] Margulies M., Egholm M., Altman W.E. et al. // Nature. 2005. V. 437. N 7057.
 P. 376–380.
- [3] Бойченко С.В., Войтович А.П., Мартынович Е.Ф. и др. // Изв. вузов. Физика. 2011. Т. 54. № 2/2. С. 86–90.
- [4] *Борн М., Вольф* Э. Основы оптики. М.: Наука, 1973. С. 165. (*Born M., Volf E.* Principles of optics. Oxford: Pergamon Press, 1968. P. 165).
- [5] Huse N., Schonle A., Hell S.V. // J. Biomed. Opt. 2001. V. 6. N 4. P. 480-484.
- [6] *Ельяшевич М.А.* Атомная и молекулярная спектроскопия. М: Эдиториал УРСС, 2001. С. 759.
- [7] Блохинцев Д.И. Основы квантовой механики. М.: Наука. 1976. С. 372.
- [8] Bashkansky M., Park D., Fatemi F.K. // Opt. Express. 2010. V. 18. N 1. P. 212– 217.
- [9] Sick B., Hecht B., Novotny L. // Phys. Rev. Lett. 2000. V. 85. N 21. P. 4482-4485.
- [10] Toninellil C., Early K., Bremil J. et al. // Opt. Express. 2010. V. 18. N 7. P. 6577–6582.