12 Новая конструкция активных виброзащитных устройств

© В.А. Мелик-Шахназаров, В.И. Стрелов, Д.В. Софиянчук, И.Ж. Безбах

Филиал Института кристаллографии им. А.В. Шубникова РАН Научно-исследовательский центр "Космическое материаловедение", Калуга E-mail: kmikran@spark-mail.ru

L-mail. Kmikran@spark-mail.ru

Поступило в Редакцию 24 октября 2011 г.

Разработана принципиально новая конструкция активных виброзащитных устройств, позволяющая преодолеть ограничения по активному диапазону частот и максимальному коэффициенту подавления колебаний, присущие известным устройствам. Показано, что эти ограничения вызваны "паразитным" сигналом наклона акселерометров в поле притяжения Земли, предложен способ его компенсации так, что уже с простыми электронными цепями нижняя граница активного диапазона виброзащитных устройств понижается от 2 до 0.2 Hz, а максимальный коэффициент подавления колебаний увеличивается от 40 до 60 dB.

Современные измерительные приборы и точное технологическое оборудование часто нуждаются в эффективной защите от вибраций. К ним относятся: 1) дифрактометры высокого разрешения (плосковолновая топография, малоугловое рассеяние в пленочных технологиях, метод стоячих волн и т.д.); 2) растровые и просвечивающие электронные микроскопы, системы позиционирования, сканирующие зондовые микроскопы, атомно-силовые микроскопы, наноманипуляторы; 3) лазерные экспериментальные и технологические устройства; 4) аппаратура для выращивания биологических и неорганических кристаллов и т.д. Кроме того, в настоящее время существенно возросла необходимость в активной защите от вибраций (микроускорений) научной апппаратуры на космических аппаратах [1,2], самолетах и других транспортных средствах.

Дорогостоящие массивные фундаменты в подвальных помещениях зданий не всегда способны изолировать аппаратуру от вибраций, вызванных как внутренними (насосы, компрессоры, вентиляторы), так и

61

Рис. 1. Расположение акселерометров и магнитоэлектрических движителей на плите. Каждая стрелка обозначает соосно расположенную пару акселерометр-движитель.

внешними (тяжелые транспортные средства) источниками. В этих случаях активные виброзащитные устройства являются более эффективным средством защиты от вибраций. Они существенно снижают требования к уровню шумов в местах расопложения измерительных приборов и технологического оборудования.

Однако для многих практических применений известные коммерческие виброзащитные устройства [3–5] недостаточно эффективны из-за ограничения активного диапазона в области низких частот (< 2 Hz) и недостаточно большого коэффициента подавления колебаний (\approx 40 dB).

Предлагается новая система авторегулирования вибирозащитных устройств, позволяющая преодолеть указанные выше "врожденные" ограничения коммерческих приборов. Одним из ее отличий является симметричная ортогональная группа акселерометров и сервисных движителей, показанная на рис. 1. Такая конструкция позволяет вместо восьмиканального управления по сигналам отдельных акселерометров перейти к шестиканальной схеме, управляющей отдельными модами механических колебаний несущей плиты, устновленной на упругих опорах. Для этого сигналы акселерометров U_1-U_8 , показанные на рис. 1, преобразуются в сигналы продольных U(LX), U(LY), U(LZ) и

торсионных U(TX), U(TY), U(TZ) мод колебаний плиты следующим образом:

$$U_7 - U_3 = U(LX);$$

$$U_5 - U_1 = U(LY);$$

$$(U_8 + U_6) + (U_4 + U_2) = U(LZ);$$

$$(U_8 + U_6) - (U_4 + U_2) = U(TX);$$

$$(U_6 + U_4) - (U_8 + U_2) = U(TY);$$

$$U_5 + U_1 = U(TZ).$$
(1)

Ограничение нижней границы активного диапазона частот известных виброзащитных устройств вызвано тем, что при колебаниях наклона несущей плиты (моды ТХ и ТҮ) сигналы акселерометров U₁ – U₈ кроме (обычно используемой) динамической составляющей $U_a(t) = Ka(t)$ (где K — коэффициент передачи акселерометра по напряжению, a(t) — ускорение) содержат неинерционный, статический вклад, вызванный изменнием проекции силы тяжести инерционной массы на ось чувствительности акселерометров. При колебаниях плиты с малой амплитудой $\Delta \varphi$ амплитуда статического вклада для акселерометров, ориентированных вертикально и горизонтально, определяется соотношениями $\Delta U_{\varphi}^{\uparrow} = -Kg \sin \varphi \Delta \varphi$ и $\Delta U_{\varphi}^{\rightarrow} = Kg \cos \varphi \Delta \varphi$ соответственно. Если виброзащитная панель установлена горизонтально, то $\Delta U_{\varphi}^{\uparrow} = -Kg\Delta \varphi^2$, а $\Delta U_{\varphi}^{\rightarrow} = Kg\Delta \varphi$. При колебаниях панели амплитуда динамического сигнала акселерометров $\Delta U_a = K a_m = K L \omega^2 \Delta \phi$ (где L — характерный размер панели, а ω и $\Delta \varphi$ — частота и амплитуда угловых колебаний соответставенно), так что для отношения статического, "паразитного" сигнала наклона акселерометров к динамическому сигналу можно записать:

$$\frac{\Delta U_{\varphi}^{\uparrow}}{\Delta U_{a}} = \frac{g \Delta \varphi}{L \omega^{2}},\tag{2}$$

$$\frac{\Delta U^{\rightarrow}}{\Delta U_a} = \frac{g}{Lw^2}.$$
(3)

Из соотношений (2) и (3) видно, что помеха от сигнала наклона акселерометров в обоих случаях быстро увеличивается с понижением частоты. Так, по расчетам для конструции с L = 20 сm отношение $\Delta U_{\varphi}^{\rightarrow}/\Delta U_a = 0.1$ при $\nu = 2.7$ Hz и достигает значения 3 при $\nu = 0.5$ Hz.

Статический вклад в сигнал пьезоэлектрических акселерометров, измеренный в диапазоне частот 0.1-3 Hz, соответствует приведенным оценкам, равенство $\Delta U_{\phi}^{\rightarrow}/\Delta U_a = 1$ наблюдается вблизи 1 Hz. Видно, что при частотах < 2 Hz отношение сигнала к сигналу помехи в цепях авторегулирования может быть ниже допустимого уровня.

Сравнение (2) и (3) показывает, что $\Delta U_{\phi}^{\top}/\Delta U_a$ отличается от $\Delta U_{\phi}^{\rightarrow}/\Delta U_a$ малым сомножителем $\Delta \phi \leq 10^{-3}$. Поэтому в цепях, содержащих вертикально ориентированные акселерометры, помеха будет проявляться при значительно более низких частотах, чем в цепях, содержащих горизонтально ориентированные акселерометры. Это обстоятельство может быть использовано для компенсации (подавления) сигнала наклона акселерометров, ориентированных горизонтально.

Дважды проинтегрированные сигналы углового ускорения мод TX и TY определяют углы наклона плиты, так что, как видно из (4) и (5), паразитные сигналы наклона, пропорциональные этим углам, в сигналах трансляционных мод U(LX) и U(LY) могут подавлены:

$$P \iint U(TX)dx^2 + (U_5 - U_1) = U_0(LY), \tag{4}$$

$$P_1 \iint U(TY)dt^2 + (U_7 - U_3) = U_0(LX).$$
 (5)

На рис. 2 представлен преобразователь каналов управления, выполняющий с помощью прецизионных сумматоров C1–C6 функции (1) и содержащий также компенсаторы сигналов наклона акселерометров K1 и K2, которые выполняют функции (4) и (5). При этом заметим, что сигнал моды $U(TZ) = U_s + U_1$ не нуждается в компенсаторе, так как паразитные сигналы акселерометров 1 и 5, как видно из схемы на рис. 1, противофазны.

Количественно эффективность новой схемы управления виброзащитных устройств зависит главным образом от характеристик акселерометров и двойных интеграторов. Из двух доступных к настоящему времени типов акселерометров: механических компенсационных, использующихся в навигационных устройствах, и пьезоэлектрических — для измерений вибраций нами выбран второй. Механические акселерометры дороги и функционируют в ограниченном диапазоне частот, до ≈ 100 Hz, в то время как во многих случаях верхняя граница активного диапазона частот виброзащитных устройств должна быть

65

Рис. 2. Разделитель каналов регулирования.

не ниже 300–800 Hz. Пьезоэлектрические акселерометры с коэффициентом передачи от $0.2 V/g_0$ до $2V/g_0$ оебспечивают остаточный уровень шумов виброзащитной плиты $10^{-6}g_0-10^{-7}g_0$ в области частот 0.1–10 Hz (использовались малошумящие операционные усилители OPA627, OPA111). Проблемы, возникающие в связи с необычно низкой граничной частотой измерительных цепей (≈ 0.05 Hz), представляют

Рис. 3. Коэффициент подавления колебаний коммерческого виброзащитного устройства (кривая I) и новой конструкции, рассчитанной на нижнюю границу активного диапазона частот ≈ 0.2 Hz (кривая 2).

собой медленный температурный дрейф сигнала, вызванный термическим расширением корпуса акселерометра и пьезоэлемента. Для устранения температурного дрейфа использовалась многослойная тепловая изоляция корпусов акселерометров, а также, при необходимости, усилители сигнала акселерометров с автоподстройкой нуля.

Нижняя граница активного диапазона частот виброзащитного устройства, построенного по новой схеме, определяется точностью цепей компенсатора сигнала наклона акселерометров, то есть точностью интегрирования. Использование операционных усилителей OPA111,

OPA128 с малыми токами смещения ($\approx 100 \text{ fA}$) обеспечивает точность интегрирования не ниже 1%, что отвечает десятикратному понижению границы активного диапазона частот $c \approx 2$ до ≈ 0.2 Hz.

Цепи авторегулирования виброзащитной панели, за исключением преобразователей каналов и компенсаторов сигнала наклона акселерометров, строятся по стандартным схемам (см., например, [6]). Рассчитанная функция передачи шести идентичных авторегуляторов обеспечивает кривую подавления колебаний, показанную на рис. 3. Видно, что при десятикратном понижении граничной частоты активного диапазона частот и десятикратном увеличении максимального коэффициента подавления колебаний существенно расширяется область применения новых виброзащитных устройств. Так, в области частот 2–6 Hz, в которой, как правило, наблюдаются резонансные колебания зданий, эффективность новых виброзащитных устройств, в отличие от коммерческих, существенно выше.

В заключение необходимо отметить, что описанная выше новая конструкция активных виброзащитных устройств фактически представляет собой исходную принципиальную схему, на основе которой могут быть построены устройства с различными заданными параметрами, отличающиеся степенью совершенства электронных узлов и параметрами акселерометров.

Работа выполнена в рамках реализации ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса на 2007–2013 годы" (Государственный контракт № 16.513.11.3093 от 26.07.2011 г.).

Список литературы

- [1] Захаров Б.Г., Волков П.К., Серебряков Ю.А., Стрелов В.И., Осипьян Ю.А. // Поверхность. 2001. № 9. С. 48–55.
- [2] Стрелов В.И., Захаров Б.Г., Сидоров В.С., Безбах И.Ж., Артемьев В.К. // Поверхность. 2005. № 10. С. 80-86.
- [3] www.herzan.com
- [4] www.halcyonics.de, www.halsyonics.com
- [5] www.herz.co.jp/english/
- [6] Трофимов А.И., Егупов Н.Д., Дмитриев А.Н. Методы теории автоматического управления, ориентированные на применение ЭВМ. М.: Энергоатомиздат, 1997.