11

Об изменении структуры кристалла Rb₂NaYF₆: Yb³⁺ при переходе из кубической в тетрагональную фазу

© А.М. Леушин

Казанский (Приволжский) федеральный университет, Казань, Россия E-mail: amleushin@gmail.com

(Поступила в Редакцию 15 мая 2013 г.)

С использованием всех параметров эмпирически найденных кристаллических полей парамагнитных центров ионов Yb^{3+} кубической и тетрагональной симметрии установлена картина искажений кристаллической решетки, происходящих в окрестности Yb^{3+} в процессе перехода кристалла $Rb_2NaYF_6:Yb^{3+}$ из кубической в тетрагональную фазу. Показано, что октаэдры YbF_6 поворачиваются около оси 4-го порядка на угол, приблизительно равный 1.2° . Кроме того, сами октаэдры деформируются так, что ионы F^- , симметрично располагающиеся в плоскости, перпендикулярной оси поворота, приближаются к примесному иону на 0.0004 nm. Ионы фтора, находящиеся на оси поворота, наоборот, удаляются от иона Yb^{3+} на 0.0005 nm. На основании полученных результатов делается вывод о том, что полный конденсат параметров порядка исследуемого фазового перехода включает в себя не только критические повороты октаэдрических групп, но также и некритические смещения атомов в повернувшихся октаэдрах.

Работа выполнена при финансировании НД 02, ВД 0210, тема 021000016 (девиз темы Бюджет 12-16) Казанского (Приволжского) федерального университета.

1. Введение

Соединения с общей формулой A₂BLnX₆, в которой A и В — одновалентные ионы щелочных металлов, Х анион галогенидов и Ln — трехвалентный редкоземельный или иттриевый анион, в широком температурном интервале кристаллизуются в кубической структуре эльпасолита с пространственной группой $Fm\bar{3}m(O_h^5)$ [1–3]. Семейство кристаллов со структурой эльпасолита относится к перовскитоподобным соединениям, характерной особенностью структуры которых является наличие октаэдрических групп. В отличие от простых перовскитов, где все октаэдры эквивалентны, в эльпасолитах, называемых также упорядоченными перовскитами, имеется два сорта ионных групп BF₆ и LnF₆, которые чередуются вдоль трех осей четвертого порядка. Малые одновалентные катионы (B^+) и трехвалентные катионы (Ln^{3+}) располагаются в октаэдрических позициях [(4b) и (4a) соответственно], в то время как большие одновалентные катионы (А⁺) находятся в положениях (8с) и окружены двенадцатью анионами, образующими кубооктаэдр. Кристаллическая структура представляет собой трехмерную сеть связанных своими вершинами октаэдров BF₆ и LnF₆, в пустотах которой в центрах каркасов из восьми октаэдров помещаются большие катионы А⁺.

Большинство кристаллов этого семейства, так же как и представители семейства перовскитов, испытывают структурные фазовые переходы (ФП), связанные с неустойчивостью кристаллической решетки по отношению к тем или иным решеточным модам колебаний [4].

Систематическое изучение природы структурных искажений фтористых эльпасолитов в основном было сконцентрировано на соединениях Rb₂KLnF₆, Rb₂NaLnF₆, Cs₂KLnF₆, Cs₂NaLnF₆, Cs₂RbLnF₆, так как они более доступны и представляют наибольший интерес с технологической точки зрения. По одному или несколько ФП было обнаружено в большинстве фторовых эльпасолитов в температурном интервале между 130 К и 480 К. Исследования велись с использованием различных методов, таких как дифракция рентегеновских лучей [5-8], ЯМР [9,10] или ЭПР [11,12] спектроскопии, измерения теплоемкости [13], рамановского рассеяния [14] и гидростатического давления [15,16]. Как правило, единичные $\Phi\Pi \ Fm\bar{3}m(O_h^5) \rightarrow I4/m(C_{4h}^5)$ в этих структурах связывают с возникновением неустойчивости решетки по отношению к критическим поворотам октаэдрических ионов LnF₆, обусловленной конденсацией мягких фононных мод. Однако для объяснения последовательных переходов необходим учет некритических смещений атомов, которые сводятся к незначительным искажениям октаэдров и смещениям атомов А⁺, расположенных в межоктаэдрических пустотах [17].

В большинстве исследованных кристаллов в центре октаэдра LnF_6 находится редкоземельный ион (RE) RE^{3+} , и хотя радиус иона Y^{3+} в октаэдрической позиции $r_{Y^{3+}} = 0.1040$ nm [18] почти не отличается от радиусов многих RE^{3+} , известны лишь две работы [19,20], в которых сообщается о наблюдении фазового перехода в кристалле Rb_2KYF_6 . До последнего времени было принято считать, что кристаллы Rb_2NaYb_6 [1,2,21–25] остаются кубическими при охлаждении вплоть до 4 К.

Однако совсем недавно в работах [26,27] было сообщено об обнаружении структурного ФП в кристалле Rb₂NaYF₆. Авторы [26] исследовали чистый кристалл Rb₂NaYF₆ методами рамановской спектроскопии и гидростатического давления, и установили, что при T = 154 К в нем происхоидт ФП из кубической в разупорядочную фазу, сопровождаемый восстановлением мягкой моды.

В работы [27] представлены результаты наблюдения структурного ФП в кристалле Rb₂NaYF₆, содержащем примесные RE. В спектрах ЭПР при низких температурах регистрировались сигналы центров тетрагональной симметрии ионов Dy³⁺ и Yb³⁺. При температурном исследовании оптических спектров ионов Yb³⁺ в окрестности температуры 150 К было обнаружено превращение кубических (Т_с) парамагнитных центров (ПЦ) ионов Yb^{3+} в центры тетрагональной симметрии (T_{tet}), и одновременно наблюдалось раздвоение некоторых линий люминесценции, свидетельствующее о расщеплении кубических квартетных уровней энергии Yb³⁺ кристаллическим полем (КП) тетрагональной симметрии. Интерпретация этих результатов показала, что наблюдаемые T_{tet} образуются вследствие поворотов октаэдров YbF₆ около осей 4-го порядка и незначительных искажений структуры октаэдров, происходящих в процессе ФП кристалла. Выполненные в [27] теоретические расчеты позволили оценить величину угла поворота октаэдров и представить картину их искажений. Вычисления базировались на рассмотрении поворота октаэдра YbF₆, образующего ПЦ Т_с, в результате которого симметрия КП понижается до тетрагональной, вследствие того, что зависящие от угла поворота параметры КП B_4^4 и B_6^4 меняются по величине. При ФП, обусловленном конденсацией соответствующей мягкой фононной моды, примерно на такие же углы, как и октаэдр YbF₆, поворачиваются и все другие окружающие ПЦ октаэдры YF₆ и NaF₆. При этих поворотах меняется положение только четвертых и более далеких соседей иона Yb³⁺, а их роль в формировании величин параметров КП 4-го и 6-го порядков чрезвычайно мала. Однако при превращении T_c в T_{tet} в гамильтониане взаимодействия иона Yb³⁺ с КП тетрагональной симметрии появляется слагаемое 2-го порядка $B_2^0 O_2^0$, величина параметра B_2^0 которого не зависит от поворота октаэдра YbF₆, но более чувствительна к поворотам таких удаленных октаэдров как YF₆ и NaF₆. К тому же, именно параметр B_2^0 наиболее сильно реагирует на искажение структуры октаэдра YbF₆ и, таким образом, является основным показателем понижения кубической симметрии ПЦ. Однако параметр В⁰₂ из-за сложности его вычисления в работе [27] не принимался во внимание.

В настоящей работе мы представляем более тщательный анализ картины искажений кристаллической решетки, происходящих в окрестности Yb^{3+} в процессе ФП в кристалле $Rb_2NaYF_6:Yb^{3+}$. Исследование проводится на основе модели суперпозиции с использованием всех эмпирически найденных параметров потенциалов КП T_c и T_{tet} .

Параметры модели суперпозиции кубических центров

Исследованные в работе [27] оптические и ЭПР спектры позволили установить эмпирические схемы уровней

Рис. 1. Фрагмент структуры кристалла $Rb_2NaYF_6:Yb^{3+}$, содержащий кубический центр. Ион Yb^{3+} находится в центре октаэдра из шести ионов F^- . Вторая координационная сфера образована восьмью ионами Rb^+ , находящимися в вершинах куба. Третья сфера состоит из шести ионов Na^+ , занимающих вершины октаэдра.

энергии T_c и T_{tet} и определить параметры КП, действующих на ион Yb³⁺ в кубической и тетрагональной фазах кристалла Rb₂NaYF₆:Yb³⁺. Найденные величины параметров КП T_c и T_{tet} представлены в таблице в строках T_c (эксп.) и T_{tet} (эксп.) соответственно.

Взаимодействие иона Yb³⁺ с КП кубической симметрии описывается гамильтонианом вида

$$H_{\rm cr}(\mathbf{O}_h) = B_4^0(\mathbf{O}_4^0 + 5\mathbf{O}_4^4) + B_6^0(\mathbf{O}_6^0 - 21\mathbf{O}_6^4), \qquad (1)$$

где параметры КП $B_k^q \equiv A_k^q \langle r^k \rangle$ включают в себя величины средних степеней радиуса электрона $\langle r^k \rangle$, а $O_k^q = \sum_i O_k^q(\theta_i, \varphi_i)$ являются операторами Стивенса, зависящими от полярных координат θ_i , φ_i *i*-го электрона парамагнитного иона (ПИ) [28]. Радиус-векторы электронов конфигурации $4f^{13}$ определяются по отношению к кубическим кристаллическим осям X, Y, Z (рис. 1).

При анализе оптических спектров T_{tet} исходили из того, что $\Phi\Pi$ из кубической в тетрагональную фазу в кристалле Rb₂NaYF₆ осуществляется посредством такого же механизма, как и в серии кристаллов Rb₂NaREF₆ ($RE = Dy^{3+}$, Ho³⁺, Tm³⁺) [6,8]. $\Phi\Pi$ в этих структурах связывают с возникновением неустойчивости решетки по отношению к поворотам октаэдрических групп REF_6 и NaF₆. По данным теоретико-группового анализа возможных искажений структуры эльпасолита [29], фазовый

Параметры кристаллического поля (в $cm^{-1})$ иона Yb^{3+} в кубической и тетрагональной фазах кристалла Rb_2NaYF_6

Параметр	B_{2}^{0}	B_4^0	B_4^4	B_{6}^{0}	B_{6}^{4}
Т _с (эксп.)	0	321.9	1609.5	-6.9	144.9
T_c (reop.)	0	321.9	1609.4	-7.1	149.1
<i>T</i> _{tet} (эксп.)	-11.7	320.1	1622.9	-7.3	140.5
T _{tet} (теор.)	-12.2	320.9	1620.2	-6.2	152.2

Рис. 2. Схематическое изображение повернувшихся фторовых октаэдров в тетрагональной фазе кристалла $Rb_2NaYF_6: Yb^{3+}$. Показан вид сверху на слой, в центральном октаэдре которого оказался примесный ион, образующий T_{tet} . Ось $Z T_{tet}$ перпендикулярна плоскости рисунка, а оси X и Y направлены по осям 4-го порядка исходной кубической фазы кристалла. Символ искажения структуры $(0, 0, \varphi)$, где φ — угол поворота октаэдров LnF₆.

переход $O_h^5 \to C_{4h}^5$ связан с мягкой модой, принадлежащей центру зоны Бриллюэна. Соответствующее искажение, обусловленное конденсацией мягкой фононной моды представления Γ_4^+ [6], обозначается как искажение типа (0, 0, φ) [29]. Оно представляет собой квазидвумерное движение жестких связанных октаэдрических ионов, при котором поворот одного октаэдра вокруг какой-либо кубической оси ведет к искажению целого слоя октаэдров, ортогонального к этой оси (рис. 2). Вращения ф-типа означает, что октаэдры соседних слоев поворачиваются на тот же самый угол, но в противоположном направлении. Ион Yb³⁺, находящийся в центре такого повернувшегося октаэдра в тетрагональной фазе кристалла, подвержен действию кристаллического поля тетрагональной симметрии группы C_{4h}, взаимодействие с которым описывается гамильтонианом вида [30]

$$H_{\rm cr}(C_{4h}) = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^4 O_4^4 + B_6^0 O_6^0 + B_6^4 O_6^4 + B_4^{-4} O_4^{-4} + B_6^{-4} O_6^{-4}.$$
(2)

Параметры B_4^{-4} и B_6^{-4} двух последних членов, которые непосредственно являются мерой отклонения симметрии КП группы C_{4h} от более высокой симметрии группы D_{4h} , достаточно малы по сравнению с другими параметрами, ответственными за понижение кубической симметрии. В таком случае ими можно пренебречь, и в операторах Стивенса упрощенного гамильтониана (2) радиус-векторы электронов 4f можно отнести к системе координат с осью Z, направленной по оси поворота

октаэдра и осями X и Y, расположенными так, как указано на рис. 2.

Для количественной оценки искажений решетки вблизи примесного иона воспользуемся моделью суперпозиции (MC) Ньюмена [31–36]. В этой модели постулируется, что параметры КП являются линейной суперпозицией параметров, обусловленных каждым лигандом. Результирующие параметры определяются выражением

$$B_k^q = \sum_L \sum_i K_k^q(\Theta_i, \Phi_i) \bar{B}_k(R_L), \tag{3}$$

где $K_k^q(\Theta_i, \Phi_i)$ — структурные факторы, зависящие от угловых координат (определяемых сферическими углами Θ_i и Φ_i) всех ионов, расположенных на расстоянии R_L от ПИ, а $\bar{B}_k(R_L)$ — "intrinsic" параметры, зависящие от типа лиганда. Суммирование в (3) осуществляется по координационным сферам лигандов (сумма по L) и по всем лигандам каждой сферы (сумма по i). После выполнения суммирования по i, выражению (3) можно придать вид

$$B_k^q = \sum_L K_k^q(L) \bar{B}_k(R_L), \qquad (4)$$

где $K_k^q(L)$ — структурный фактор координационной сферы *L*. Зависимость параметров $\bar{B}_k(R_L)$ от R_L в ограниченных областях расстояний подчиняется степенному закону вида

$$\bar{B}_k(R_L) = \bar{B}_k(R_0)(R_0/R_L)^{t_k},$$
(5)

в котором t_k — показатель степени, а $\bar{B}_k(R_0)$ — собственный параметр модели, относящийся к некоторому среднему расстоянию R_0 , обычно принимаемому равным сумме ионных радиусов магнитного иона и лиганда.

При описании параметров КП 4-го и 6-го порядков иона Yb^{3+} в Rb_2NaYF_6 в выражении (4) ограничимся учетом вкладов только двух координационных сфер: отрицательных ионов фтора и положительных ионов рубидия, поскольку вклады всех остальных более далеких соседей чрезвычайно малы. Имея в виду, что ионы рубидия также достаточно удалены от ПИ, их можно рассмотреть как точечные заряды и тогда для собственных параметров сферы ионов рубидия можно воспользоваться выражениями [33]

$$ar{B}_4(R_{
m Rb}) = -Z_4 e^2 / 8 R_{
m Rb}^5, \quad ar{B}_6(R_{
m Rb}) = -Z_6 e^2 / 16 R_{
m Rb}^7,$$

где $Z_k = Z(1 - \sigma_k)\langle r^k \rangle$, $\langle r^k \rangle$ — величины средних степеней радиуса 4f-электрона ПИ, Z — заряд иона рубидия, e — элементарный заряд, а σ_k — фактор экранирования или анти-экранирования КП поляризацией внешних ($5s^2$ и $5p^6$) заполненных оболочек ПИ. Величины $\bar{B}_4(R_0)$, t_4 и $\bar{B}_6(R_0)$, t_6 , характеризующие вклад в параметры КП сферы ионов фтора, можно было бы определить из параметров КП T_c иона Yb³⁺ в Rb₂NaYF₆, и изоморфном ему кристалле Cs₂NaYF₆, найденных в работах [27,37], если бы были известны равновесные расстояния $R_F = R$ лигандов F⁻ относительно ПИ Yb³⁺.

Именно таким образом нами сделано при анализе структуры тригональных центров, образованных ионом Yb³⁺, находящимся в центре ионов фтора, и дополнительным ионом F-, компенсирующим избыток положительного заряда в кристаллах SrF₂ и BaF₂ [38]. Для примесных кристаллов фторовых эльпасолитов, к сожалению, такой информации пока нет, поэтому в определении параметров t_4 , $\bar{B}_4(R_0)$, t_6 и $\bar{B}_6(R_0)$ нами выбран несколько иной путь. Во-первых, в качестве расстояния R_0 приняли величину 0.2153 nm, равную сумме ионных радиусов ионов Yb³⁺ и F⁻ [18]. Во-вторых, допустили, что в T_c ионов Yb³⁺ в кристаллах Rb₂NaYF₆ и Cs₂NaYF₆ найденные из эксперимента параметры B_4^0 и B_6^0 [27,37] можно описать единым набором параметров t_k и $\bar{B}_k(R_0)$, которые определяются следующей системой четырех уравнений

$$B_{4}^{0}(\text{Rb}) = \sum_{i} \bar{B}_{4}(R) K_{4}^{0}(\Theta_{i}, \Phi_{i}) + \sum_{j} \bar{B}_{4}(R_{\text{Rb}}) K_{4}^{0}(\Theta_{j}, \Phi_{j})$$

$$B_{4}^{0}(\text{Cs}) = \sum_{i} \bar{B}_{4}(R) K_{4}^{0}(\Theta_{i}, \Phi_{i}) + \sum_{j} \bar{B}_{4}(R_{\text{Cs}}) K_{4}^{0}(\Theta_{j}, \Phi_{j})$$

$$B_{6}^{0}(\text{Rb}) = \sum_{i} \bar{B}_{6}(R) K_{6}^{0}(\Theta_{i}, \Phi_{i}) + \sum_{j} \bar{B}_{6}(R_{\text{Rb}}) K_{6}^{0}(\Theta_{j}, \Phi_{j})$$

$$B_{6}^{0}(\text{Cs}) = \sum_{i} \bar{B}_{6}(R) K_{6}^{0}(\Theta_{i}, \Phi_{i}) + \sum_{j} \bar{B}_{6}(R_{\text{Cs}}) K_{6}^{0}(\Theta_{j}, \Phi_{j}).$$
(6)

Ионы фтора 1, 2, 3, 4, 5 и 6, составляющие изображенный на рис. 1 октаэдр ближайшего окружения иона Yb³⁺, в системе координат кубического центра занимают позиции с координатами: $R_1 = R_2 = R_3 = R_4 = R_5$ $= R_6 = R, \ \Theta_1 = 0, \ \Theta_2 = \Theta_3 = \Theta_4 = \Theta_5 = \pi/2, \ \Theta_6 = \pi,$ $\Phi_2 = 0, \ \Phi_3 = \pi/2, \ \Phi_4 = \pi, \ \Phi_5 = 3\pi/2.$ В кубе второй координационной сферы ионы Rb (либо Cs) Rb₁, Rb₂, Rb₃, Rb₄ в этой же системе координат занимают позиции с координатами: $R_{\rm Rb1} = R_{\rm Rb2} = R_{\rm Rb3} = R_{\rm Rb4}$ $= R_{\rm Rb}, \quad \Theta_1 = \Theta_2 = \Theta_3 = \Theta_4 = 54.74^{\circ} \quad \left(\sin \Theta_1 = \sqrt{\frac{2}{3}}, \right)$ $\cos \Theta_1 = \sqrt{\frac{1}{3}}, \ \Phi_1 = 45^\circ, \ \Phi_2 = 135^\circ, \ \Phi_3 = 225^\circ, \ \Phi_4 = 315^\circ,$ в то время как координаты второй четверки ионов Rb₅, Rb₆, Rb₇, Rb₈ таковы: $R_{\rm Rb5} = R_{\rm Rb6}$ $= R_{\rm Rb7} = R_{\rm Rb8} = R_{\rm Rb}, \quad \Theta_5 = \Theta_6 = \Theta_7 = \Theta_8 = 125.26^{\circ} \\ \left(\sin \Theta_5 = \sqrt{\frac{2}{3}}, \ \cos \Theta_5 = -\sqrt{\frac{1}{3}}\right), \quad \Phi_5 = 45^{\circ}, \quad \Phi_6 = 135^{\circ},$ $\dot{\Phi}_7 = 225^\circ, \ \Phi_8 = 315^\circ.$ Вычисляя структурные факторы обеих координационных сфер, системе уравнений (6) можно придать вид

$$B_{4}^{0}(\text{Rb}) = (7/2)\bar{B}_{4}(R_{0}/R)^{t_{4}} + 7Z_{4}e^{2}/18R_{\text{Rb}}^{5}$$

$$B_{4}^{0}(\text{Cs}) = (7/2)\bar{B}_{4}(R_{0}/R)^{t_{4}} + 7Z_{4}e^{2}/18R_{\text{Cs}}^{5}$$

$$B_{6}^{0}(\text{Rb}) = (3/4)\bar{B}_{6}(R_{0}/R)^{t_{6}} - Z_{6}e^{2}/9R_{\text{Rb}}^{7}$$

$$B_{6}^{0}(\text{Cs}) = (3/4)\bar{B}_{6}(R_{0}/R)^{t_{6}} - Z_{6}e^{2}/9R_{\text{Cs}}^{7}, \qquad (7)$$

где нами несколько упрощены обозначения, за счет использования $\bar{B}_k(R_0) = \bar{B}_k$. Для нахождения приемлемых величин параметров t_k и \bar{B}_k необходимо сделать некоторые допущения относительно размеров октаэдров в обоих кристаллах. Ионы Yb³⁺, внедренные в кристаллы основы, в позиции ионов Y³⁺, по-видимому, будут находиться на таких расстояниях от ионов F⁻, которые являются промежуточными между теми расстояниями, на которых они располагаются в кристаллах Rb₂NaYbF₆ и Cs₂NaYbF₆, и расстояниями между ионами Y³⁺ и F⁻ в соответствующих основах Rb₂NaYF₆ и Cs₂NaYF₆. Поэтому разумно предположить, что величина расстояния между ионом Yb³⁺ и ионом F⁻ в примесном кристалле не может быть меньше той, которая имеет место в кристалле Rb_2NaYbF_6 (0.2206 nm) [1], и больше, чем расстояние между ними в кристалле Cs₂NaYF₆ (0.2264 nm) [1]. Имея эти соображения в виду, мы решили систему (7) четырех несовместных уравнений для наименьшей из возможных (R = 0.2206 nm) величины размеров октаэдров. При варьировании искомых параметров также руководствовались тем, что приемлемыми значениями степеней t₄ и t₆, характеризующих взаимодействие трехвалентного RE с лигандным ионом F⁻, следует считать величины, изменяющиеся в интервалах примерно от 5 до 8 и от 8 до 15 соответственно [31–33]. Используя для $\langle r^k \rangle$ и σ_k значения $\langle r^4 \rangle = 1.448$ (arb.units), $\langle r^6 \rangle = 7.003$ (arb.units), $\sigma_4 = -0.725, \sigma_6 = -0.030,$ вычисленные на релятивистских функциях иона Yb³⁺ в работе [39], и полагая Z = 1, $R_{\rm Rb} = 0.3840$ nm, $R_{\rm Cs} = 0.3921$ nm [1], в результате решения системы (7) для параметров МС нашли: $\bar{B}_4 = 101.81 \,\mathrm{cm}^{-1}, \ t_4 = 5.57, \ \bar{B}_6 = -13.81 \,\mathrm{cm}^{-1}$ и $t_6 = 13.03$. Далее, рассматривая эти величины в качестве исходных, решили систему уже только двух уравнений

$$B_4^0 = (7/2)\bar{B}_4(R_0/R)^{t_4} + 7Z_4e^2/18R_{\rm Rb}^5$$
$$B_6^0 = (3/4)\bar{B}_6(R_0/R)^{t_6} - Z_6e^2/9R_{\rm Rb}^7$$
(8)

с тем, чтобы для кристалла Cs₂NaYF₆:Yb³⁺ найти такие параметры МС и такой размер R октаэдра Yb³⁺F₆, с которыми экспериментальные значения параметров КП Т_с описывались бы наилучшим образом. При этом еще потребовали, чтобы размер октаэдра был меньше, чем в кристалле Rb₂NaYF₆, и больше, чем в кристалле Rb₂NaYbF₆. Одним из наборов оказался такой: $\bar{B}_4 = 105.57 \,\mathrm{cm}^{-1}, t_4 = 5.49, \ \bar{B}_6 = -13.49 \,\mathrm{cm}^{-1},$ t₆ = 13.10. При этом, обнаружилось, что для того, чтобы теоретические параметры B_4^0 и B_6^0 , вычисленные с этими значениями, почти в точности совпадали с экспериментальными (табл. 1, строки Т_с (теор.) и Т_с (эксп.)) расстояние R от ПИ до иона фтора должно быть равным 0.22161 nm. Если иметь в виду, что это расстояние характеризует размер октаэдра YbF₆ T_c в кристалле Rb₂NaYF₆:Yb³⁺, то увидим, что наблюдавшиеся параметры КП T_c требуют, чтобы октаэдр YbF₆ в кристалле Rb₂NaYF₆ был немного растянут. Тем не менее размер октаэдра Т_с все же остается меньше расстояния между ионами Y³⁺ и F⁻ в кристалле Rb₂NaYF₆ (0.22173 nm [1]).

Следует обратить внимание на то, что параметр \bar{B}_6 оказался отрицательным, хотя, как утверждается в

~

работе [33], все собственные параметры \bar{B}_k MC должны быть положительны. Однако трудно себе представить, как можно получить отрицательный параметр КП В₆ с положительным собственным параметром МС В, если считать, что КП обусловлено только ближайшими ионами фтора. Если же принять во внимание и вторую координационную сферу ионов рубидия, то можно будет получить отрицательный параметр КП B_6^0 и с положительным собственным параметром MC \bar{B}_6 , но для этого потребуется очень большое увеличение заряда Z иона Rb. Можно в связи с этим высказать предположение, что именно ионы Rb⁺ создают такое перераспределение электронной плотности в окрестности ПИ, при котором электроны 4f-оболочки оказываются смещенными с направлений связей Yb³⁺-F⁻ к направлениям Yb³⁺-Rb⁺. Причем этот эффект растет с увеличением размеров и числа электронов ионов вторых соседей, так как параметр КП B_6^0 иона Yb³⁺ в кристалле Cs₂NaYF₆ тоже отрицательный, и еще больший по абсолютной величине [37]. Отрицательный собственный параметр MC B_6 , по-видимому, эффективно учитывает это перераспределение плотности электронов, поскольку в структуре со вторыми соседями, представленными меньшими по размерам ионами K^+ , параметр B_6^0 оказывается положительным, что наблюдается, например, в перовскитах KMgF₃ и KZnF₃ [40]. Однако в перовските CsCaF₃ [41] он опять меняет знак.

3. Структура тетрагональных центров

При анализе структуры T_{tet} будем, естественно, предполагать, что при повороте октаэдра ион Yb³⁺ и четыре иона F_2^- , F_3^- , F_4^- и F_5^- остаются в одной плоскости, перпендикулярной оси центра, и их расстояния до примесного иона, в силу тетрагональной симметрии центра, остаются равными между собой. Конечно, в тетрагональной фазе кристалла повернувшийся октаэдр может быть растянут или сжат, поэтому будем полагать, что $R_2 = R_3 = R_4 = R_5$ и обозначим это расстояние через R_2 . Расстояние от ионов фтора F_1^- и F₆⁻, расположенных на оси поворота, тоже останутся равными между собой $R_1 = R_6$, но при деформации октаэдра они изменятся до величины, которую далее будем обозначать через R'_1 . Угловые координаты $\Theta_1 = 0$, $\Theta_2 = \Theta_3 = \Theta_4 = \Theta_5 = \pi/2, \ \Theta_6 = \pi$ BCEX ионов не претерпевают изменений, а меняются лишь азимутальные углы. Для повернувшегося октаэдра они таковы: $\Phi_2 = \phi$, $\Phi_3 = \pi/2 + \varphi, \Phi_4 = \pi + \varphi, \Phi_5 = 3\pi/2 + \varphi,$ где φ — угол поворота октаздра (см. рис. 2). Параметры КП B_4^4 и B_6^4 октаэдра тетрагональной фазы, таким образом, оказываются зависящими от угла поворота φ и определяются выражениями

$$B_{4}^{4} = (35/2)\bar{B}_{4}(R_{2})(1 + 4\cos^{4}\varphi - 4\cos^{2}\varphi + 4\sin^{4}\varphi - 4\sin^{2}\varphi)$$
$$B_{6}^{4} = -(63/4)\bar{B}_{6}(R_{2})(1 + 4\cos^{4}\varphi - 4\cos^{2}\varphi + 4\sin^{4}\varphi - 4\sin^{2}\varphi).$$
(9)

Если, пользуясь малостью угла поворота, зависящие от него функции разложить в ряды в окрестности $\varphi = 0$, то с точностью до четвертых степеней по φ этим параметрам можно придать вид

$$B_4^4 = (35/2)\bar{B}_4(R_2)\left(1 - 8\varphi^2 + (32/3)\varphi^4\right)$$
$$B_6^4 = -(63/4)\bar{B}_6(R_2)\left(1 - 8\varphi^2 + (32/3)\varphi^4\right).$$
(10)

Теперь все параметры кристаллического поля T_{tet} будут описываться следующей системой уравнений:

$$B_{4}^{0} = 2\bar{B}_{4}(R_{1}') + \frac{3}{2}\bar{B}_{4}(R_{2}) + 7Z_{4}e^{2}/18R_{\text{Rb}}^{5}$$

$$B_{4}^{4} = \frac{35}{2}\bar{B}_{4}(R_{2})\left(1 - 8\varphi^{2} + (32/3)\varphi^{4}\right) + 35Z_{4}e^{2}/18R_{\text{Rb}}^{5}$$

$$B_{6}^{0} = 2\bar{B}_{6}(R_{1}') - \frac{5}{4}\bar{B}_{6}(R_{2}) - Z_{6}e^{2}/9R_{\text{Rb}}^{7}$$

$$B_{6}^{4} = -\frac{63}{4}\bar{B}_{6}(R_{2})\left(1 - 8\varphi^{2} + (32/3)\varphi^{4}\right) + 7Z_{6}e^{2}/3R_{\text{Rb}}^{7}$$

$$B_{2}^{0} = 2\bar{B}_{2}(R_{1}') + 2\bar{B}_{2}(R_{2})$$

$$+ \sum_{L}\sum_{j}K_{2}^{0}(\Theta_{j}, \Phi_{j})(-Z_{2})_{L}e^{2}/2R_{L}^{3}.$$
(11)

Последнее слагаемое уравнения параметра 2-го порядка неявным образом также зависит от углов поворотов октаэдров YF₆ и NaF₆, и эту зависимость можно получить, если выполнить суммирование по кристаллической решетке. Поскольку предполагается, что в процессе рассматриваемого ФП не происходит изменений позиций ионов Rb⁺, Na⁺, Y³⁺, то в сумму будут вносить вклад только ионы F⁻ повернувшихся октаэдров. Эти ионы будут распределены по координационным сферам тетрагональной структуры, расстояния до которых описываются довольно громоздкими выражениями, зависящими от размера октаэдра R, постоянной решетки a и тригонометрических функций $\sin \varphi$ и $\cos \varphi$. Однако в силу малости угла поворота октаэдров, все слагаемые можно разложить в ряды, и тогда исходная сумма, с точностью до φ^2 , превратится в сумму вторых производных по углу. Образовавшийся ряд, несмотря на его знакопеременность, будет достаточно быстро сходиться, так как отдельные его слагаемые уже очень сильно (как $1/r^5$) будут зависеть от расстояния. Вследствие удаленности ионов фтора от ПИ, изменениями поперечных размеров октаэдров YF₆, произошедшими в ходе ФП, по-видимому, можно будет пренебречь. Осуществив вышеописанное суммирование, для слагаемого $\sum_{L} \sum_{j} K_{2}^{0}(\Theta_{j}, \Phi_{j})(-Z_{2})_{L} e^{2}/2R_{L}^{3}$ из B_{2}^{0} в (11) мы получили выражение $D\phi^2$ с константой $D = -281.13 \,\mathrm{cm}^{-1}$ при учете всех ионов F⁻, входящих в 342 повернувшихся октаэдра. При вычислении использовались $\langle r^2 \rangle = 0.710$ (arb.units.), $\sigma_2 = 0.571$ [39], постоянная ре-

шетки a = 0.88693 nm, а расстояние *R* между ионами Y^{3+} и F^- в повернувшихся октаэдрах, принималось

2437

равным расстоянию между ними в кубической фазе кристалла Rb_2NaYF_6 (0.22173 nm [1]).

Вычисленная сумма является электростатическим вкладом в параметр КП 2-го порядка. Величину же $\bar{B}_2(R_0) = \bar{B}_2$, характеризующую в МС вклад в параметр B_2^0 ионов фтора ближайшего окружения ПИ и представляющую из себя, так называемый, контактный вклад в собственный параметр модели, можно определить из выражения

$$\bar{B}_2 = 3.64\bar{B}_4 - 1.96\bar{B}_6$$

полученного для f-электронов [33,42] с использованием соотношений между одноэлектронными орбитальными энергиями и собственными параметрами КП. Подставляя в него величины $\bar{B}_4 = 105.57 \,\mathrm{cm}^{-1}$ и $\bar{B}_6 = -13.49 \,\mathrm{cm}^{-1}$, находим: $\bar{B}_2 = 410.74 \,\mathrm{cm}^{-1}$. Теперь уравнение для параметра B_2^0 в системе (11) можно представить в виде

$$B_2^0 = 410.74 ((2.153/R_1')^{t_2} + (2.153/R_2)^{t_2}) 2 - 281.13\varphi^2,$$

где остается только одна неизвестная величина — показатель степени t2. Принимая его равным показателю степени модели точечных зарядов, $t_2 = 3$, и решая систему (11) с представленными в таблице величинами B_k^q (строка T_{tet} (эксп.)), находим расстояния R_1' , R_2 , характеризующие структуру октаэдра и угол его поворота φ : $R'_1 = 0.22198$ nm, $R_2 = 0.22073$ nm, $\varphi = 2.5^{\circ}$. В этой структуре T_{tet} ионы F_1^- и F_6^- на 0.0004 nm отодвигаются от парамагнитного иона, а четыре планарных иона, наоборот, на 0.0009 nm приближаются к нему. Однако с полученными величинами R_1' , R_2 и φ параметры КП T_{tet} описываются недостаточно хорошо. Теоретическое значение параметра B_2^0 , например, отличается от экспериментальной величины почти на $-2 \,\mathrm{cm}^{-1}$, хотя сам экспериментальный параметр не очень большой $(-11.7 \, \text{cm}^{-1})$. Наибольшее отклонение от экспериментального значения, равное $14 \, {\rm cm}^{-1}$, обнаруживается для параметра B_4^4 , правда сам экспериментальный параметр достаточно велик (1623 cm⁻¹). Хуже всего обстоит дело с параметром B_6^0 , который оказывается равным $-6.1\,cm^{-1}$, в то время как его экспериментальное значение равно -7.3 cm⁻¹ (см. таблицу). В связи с этим далее мы использовали полученные выше величины R'_{1} , R_{2} и ϕ как исходные для того, чтобы посредством варьирования показателя степени t₂ найти такую структуру T_{tet}, с которой экспериментальные значения параметров КП *T*_{tet} описывались бы наилучшим образом. Этого удалось достичь с параметрами $R'_1 = 0.22214$ nm, $R_2 = 0.22120 \text{ nm}, t_2 = 3.86$ и углом φ равным 1.2° . О том, насколько хорошо теоретические значения параметров КП T_{tet} соответствуют экспериментальным, можно судить из сравнения строк T_{tet} (эксп.) и T_{tet} (теор.) таблицы. В новой структуре T_{tet} ионы F_1^- и $F_6^$ на 0.0005 nm отодвигаются от ПИ, а четыре планарных иона, наоборот, на 0.0004 nm приближаются к нему. Таким образом, при переходе к тетрагональной фазе кристалла повернувшийся октаэдр деформируется так,

что происходит его растяжение вдоль оси поворота примерно на 0.001 nm и сжатие в направлении, перпендикулярном оси, примерно на 0.0008 nm.

Следует отметить, что полученная картина поведения октаэдров несколько отличается от той, которая установлена в эксперименте по рентгеновскому рассеянию [17] при исследовании аналогичного ФП в изоморфном кристалле Rb₂NaHoF₆. В этом кристалле октаэдра HoF₆ кубической фазы при температуре 17 K оказываются повернутными на угол $\varphi = 5.2^{\circ}$.

4. Заключение

Полученные результаты показывают, что искаженную тетрагональную структуру исходной кубической фазы кристалла $Rb_2NaYbF_6:Yb^{3+}$ невозможно описать только критическим параметром порядка (ПП). Полный конденсат ПП исследуемого ФП включает в себя не только критические повороты октаэдрических групп, но и некретические смещения ионов фтора в повернувших-ся октаэдрах. Проведенное исследование лишний раз демонстрирует, что информацию об изменениях структуры при ФП в кристаллах эльпасолитов, содержащих в своем составе ионы RE, можно получать не только из рентгеноструктурных данных, но также и из изучения таких кристаллов более чувствительными резонансными методами, такими как ЭПР и оптческая спектроскопия.

Список литературы

- [1] S. Aleonard, C. Pouzet. J. Appl. Cryst. 1, 113 (1968).
- [2] G. Meyer. Progr. Solid State Chem. 14, 141 (1982).
- [3] D. Babel, A. Tressaud. In: Inorganic Solid Fluorides. Chemistry and Physics / Ed. P. Hagenmuller. Academic Press, New York (1985) p. 77.
- [4] К.С. Александров, Б.В. Безносиков. Перовскитоподобные кристаллы. Изд-во СО РАН, Новосибирск (1999) 216 с.
- [5] E.J. Veenendaal, H.B. Brom, J. Ihringer. Physica B 114, 31 (1982).
- [6] P. Selgert, C. Lingner, B. Luthi. Z. Phys. B Cond. Matter 55, 219 (1984).
- [7] К.С. Александров, С.В. Мисюль, М.С. Молокеев, В.Н. Воронов. ФТТ 51, 2359 (2009).
- [8] J. Ihringer. Solid State Commun. 41, 525 (1982).
- [9] А.В. Егоров, Л.Д. Ливанова, М.С. Тагиров, М.А. Теплов. ФТТ 22, 2836 (1980).
- [10] E.J. Veenendaal, H.B. Brom. Physica B 113, 118 (1982).
- [11] J.M. Dance, J. Grannec, A. Tressaud, M. Moreno. Phys. Status Solidi B 173, 579 (1992).
- [12] S. Khairoun, A. Tressaud, J. Grannec, J.M. Dance, A. Yacoubi. Phase Transitions 13, 157 (1988).
- [13] И.Н. Флеров, М.В. Горев, В.Н. Воронов. ФТТ 38, 717 (1996).
- [14] M. Couzi, S. Khairoun, A. Tressaud. Phys. Status Solidi A 98, 423 (1986).
- [15] М.В. Горев, И.Н. Флеров, В.Н. Воронов, С.В. Мисюль. ФТТ 35, 1022 (1993).
- [16] I.N. Flerov, M.V. Gorev, A. Tressaud, J. Grannec. Ferroelectrics 217, 21 (1998).

- [17] Е.Г. Максимов, В.И. Зиненко, Н.Г. Замкова. УФН 174, 1145 (2004).
- [18] R.D. Shannon. Acta Crystallogr. A 32, 751 (1976).
- [19] Tressaud, S. Khairoud, J.P. Chaminade, M. Couzi. Phys. Status Solidi A 98, 417 (1986).
- [20] H. Guengard, J. Grannec, A. Tressaud. C.R. Acad. Sci. Ser. 2 317, 37 (1993).
- [21] B.D. Dunlap, G.R. Davidson, M. Eibschutz, H.J. Guggnheim, R.C. Sherwood. J. de Phys. C6 35, 429 (1974).
- [22] E. Bucher, H.J. Guggenheim, K. Andres, G.W. Hull, Jr. A.S. Cooper. Phys. Rev. B 10, 2945 (1974).
- [23] P.A. Tanner, L. Nign, V.N. Makhov, N.M. Khaidukov, M. Kirm. J. Phys. Chem. B 110, 12113 (2006).
- [24] C.K. Duan, P.A. Tanner, V. Babin, A. Meijerink. J. Chem. Phys. C 113, 12 580 (2009).
- [25] B.F. Aull, H.P. Jenssen. Phys. Rev. B 34, 6647 (1986).
- [26] A.S. Krylov, A.N. Vtyurin, A.S. Oreshonkov, V.N. Voronov, S.N. Krylova. J. Raman Spectr. (2013); DOI 10.1002/jrs.4263.
- [27] M.L. Falin, K.I. Gerasimov, V.A. Latypov, A.M. Leushin, N.M. Khaidukov. Phys. Rev. B 87, 115145 (2013).
- [28] Y.Y. Yeung, C. Rudowicz. Comp. Chem. 16, 207 (1992).
- [29] К.С. Александров, С.В. Мисюль. Кристаллография 26, 612 (1981).
- [30] А.М. Леушин. Таблицы функций, преобразующихся по неприводимым представлениям кристаллографических точечных групп. Наука, М. (1968). 143 с.
- [31] D.J. Newman. Adv. Phys. 20, 197 (1971).
- [32] D.J. Newman. Aust. J. Phys. **31**, 79 (1978).
- [33] D.J. Newman, Betty Ng. Rep. Progr. Phys. 52, 699 (1989).
- [34] D.J. Newman, B. Ng. Superposition model. In: Crystal Field Handbook. / Eds D.J. Newman, B. Ng. Cambridge University Press. (2000). P. 83.
- [35] M. Andrut, M. Wildner, C. Rudowicz. EMU Notes Mineralogy 6, 145 (2004).
- [36] M. Karbowiak, C. Rudowicz, P. Gnutek. Opt. Mater. 33, 1147 (2011).
- [37] M.L. Falin, K.I. Gerasimov, A.M. Leushin, N.M. Khaidukov. J. Lumin. 128, 1103 (2008).
- [38] M.L. Falin, K.I. Gerasimov, V.A. Latypov, A.M. Leushin. J. Phys.: Cond. Matter 15, 2833 (2003).
- [39] S. Edvardsson, M. Klintenberg. J. Alloys Comp. 275–277, 230 (1998).
- [40] Б.Н. Казаков, А.М. Леушин, Г.М. Сафиуллин, В.Ф. Беспалов. ФТТ 40, 2029 (1998).
- [41] А.М. Леушин, Б.Н. Казаков, Г.М. Сафиуллин. Опт. и спектр. 86 443 (1999).
- [42] D.J. Newman, D.C. Price. J. Phys. C: Solid State Phys. 8, 2985 (1975).