01;11 Адсорбция атомов водорода, щелочных металлов и галогенов на графене: расчет заряда адатома

© С.Ю. Давыдов, Г.И. Сабирова

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный электротехнический университет (ЛЭТИ)

E-mail: sergei_davydov@mail.ru

Поступило в Редакцию 10 февраля 2011 г.

Рассмотрена задача об адсорбции атома с одним валентным *s*-электроном (водород и щелочные металлы) или одной валентной *p*-дыркой (галогены) на поверхности однослойного графена и вычислены заряды адатомов. Про-анализированы случаи, когда в σ -связи адатом—графен участвуют *p*-, *s p*-, *s p*²- и *s p*³-состояния атомов углерода. Показано, что характер гибридизации достаточно слабо влияет на величину перехода заряда. Рассмотрен также характер изменения заряда адатомов в рядах Li — Cs и F — I.

Исследование адсорбционных свойств графена, т.е. обладающей уникальными свойствами двумерной гексагональной углеродной структуры [1], только начинается. На первом месте по изученности стоит атомарный водород [2–6]. Далее идут щелочные металлы [4,5,7,8]. И замыкают рассматирваемый нами ряд галогены [4,9,10]. С точки зрения теории все эти атомы схожи, так как на переход заряда работает лишь одна частица — электрон (водород и щелочные металлы) или дырка (галогены).

В работах [11,12] нами был предложен модельный подход к задаче об адсорбции на графене (М-модель). Плотность состояний графена ρ_g задавалась в виде: $\rho_g(\omega) = (2\rho_m |\omega|/\Delta)$ при $|\omega| < \Delta/2$, $(\rho_m \Delta/2 |\omega|)$ при $\Delta/2 < |\omega| < D/2$, 0 при $|\omega| > D/2$. Здесь ω — энергетическая переменная, D/2 — ширина π - и π^* -зон проводимости графена, лежащих соответствнно ниже и выше $\omega = 0$ (нуль энергии совпадает с уровнем Ферми); Δ — ширина области "псевдощели". Далее рассматривался адатом, обладающий уровнем с энергией ε_a относительно уровня Ферми. Локальная плотность состояний на адатоме $\rho_a(\omega)$ в приведенном виде

51

определяется выражением

$$\overline{\rho}_a(x) = \rho_a(x)(\Delta/2) = \frac{1}{\pi} \frac{\pi \gamma f(x)}{(x - \eta_a - \gamma \lambda(x))^2 + (\pi \gamma f(x))^2}, \qquad (1)$$

где введены следующие безразмерные параметры: $f(x) = \rho_g(x)/\rho_m$, $x = 2\omega/\Delta$, $\gamma = 2\rho_m V^2/\Delta$, $D/\Delta = 3$, $\eta_a = 2\varepsilon_a/\Delta$, $\rho_m = (4/\Delta) \times (1+2\ln 3)^{-1}$, V — матричный элемент взаимодействия орбиталей адатома и углерода. $\lambda(x) = x \ln |x^2/(1-x^2)| + x^{-1} \ln |(1-x^2)/(1-(x/d)^2)|$ [9,10]. Число заполнения адатома n_a при нулевой температуре удобно представить в виде суммы зонного n_b и локального n_l вкладов [11,12]:

$$n_b = \int_{-3}^{0} \overline{\rho}_a(x) dx, \quad n_l = \left| 1 - \gamma (d\lambda(x)/dx) \right|_{x_l}^{-1}.$$
 (2)

В случае водорода и щелочных металлов уровень адатома изначально заполнен одним элетроном с энергией $\varepsilon_a^0 = -I$ (I — энергия ионизации) относительно вакуума. С учетом кулоновского взаимодействия электронов адатома и графена величина энергии ионизации уменьшается и становится равной $I' = I - e^2/4d$, где d — длина адсорбционной связи, e — заряд позитрона [11, 12]. Энергия уровня адатома относительно уровня Ферми становится равной $\varepsilon_a = \phi_g - I + e^2/4d$ ($\phi_g = 5.11 \, {\rm eV}$ — работа выхода графена [11,12]), а заряд адатома равен $Z_a = 1 - n_a$.

Результаты работ [11,12] были получены по методу Харрисона [13] в предположении, что адсорбционная σ -связь возникает между *s*-состоянием адатома и ρ_z -состоянием атома углерода. Однако, по мнению ряда авторов (см. [4] и ссылки, приведенные там), энергетически более выгодно, когда со стороны углерода в σ -связи участвуют гибридизированные состояния вида sp^k , где k = 1, 2, 3. Обозначим *s*-состояние адатома как $|s\rangle_a$, а гибриды вида sp^k как $|sp^k\rangle = (|s\rangle + \sqrt{k}|p\rangle)/\sqrt{k+1}$ с энергиями $\varepsilon_{spk} = (\varepsilon_s + k\varepsilon_p)/(k+1)$, где ε_s и ε_p — энергии *s*- и *p*-состояний атома углерода. Обозначая через \hat{V} оператор взаимодействия орбитали $|s_a\rangle$ с $|sp^k\rangle$ и полагая матричный элемент $V_{s/spk} = -\langle s_a | \hat{V} | sp^k \rangle$, получим $V_{s/spk} = (\sqrt{k}V_{sp\sigma} - V_{ss\sigma})/\sqrt{(k+1)}$, где $V_{ss\sigma}$ и $V_{sp\sigma}$ обозначают матричные элементы σ -взаимодействия соответствующих атомных орбиталей [12]¹. Эти последние матричные элементы можно представить в ви-

 $^{^1}$ Здесь и ниже мы определяем матричный элемент V, описывающий взаимодействие адатом — графен, как положительную величину.

Таблица 1. Константа взаимодействия адатом-графен (γ) и числа заполнения адатомов водорода (n_b и n_l) и заряд адатома водорода (Z_a)

Adsorbate	H ($d = 1.10$ Å, $\varepsilon_a = -5.73$ eV)				H ($d = 1.30$ Å, $\varepsilon_a = -6.23$ eV)			
Hybridization	р-	sp-	$s p^2$ -	$s p^3$ -	р-	s p-	$s p^2$ -	$s p^3$ -
γ	8.83	16.45	16.14	15.65	4.58	8.45	8.28	8.02
n_b	0.05	0.02	0.02	0.02	0.10	0.05	0.05	0.05
	(0.06)	(0.03)	(0.03)	(0.03)	(0.10)	(0.06)	(0.06)	(0.06)
n_l	0.57	0.55	0.56	0.56	0.72	0.71	0.71	0.71
Z_a	0.39	0.42	0.42	0.42	0.18	0.24	0.24	0.24
	(0.38)	$(0.42 \)$	$(0.42 \)$	(0.41)	(0.18)	(0.23)	$(0.23 \)$	(0.23)

Примечание: для n_b и Z_a верхние числа — результаты численного расчета, нижние в скобках — результаты расчета по аналитическим формулам [10].

де $V_{ij\sigma} = \eta_{ij\sigma}(\hbar^2/m_0d^2)$, где \hbar — приведенная постоянная Планка, m_0 — масса свободного электрона, причем $\eta_{ss\sigma} = -1.32$ и $\eta_{sp\sigma} = 1.42$ [12]. Полагая $V_{s/spk} = \eta_{s/spk}(\hbar^2/m_0d^2)$, получим $\eta_{s/sp1} = 1.94$, $\eta_{s/sp2} = 1.92$, $\eta_{s/sp3} = 1.89$, откуда следует, что матричные элементы различаются мало. В работах [10,11], однако, адсорбционная связь описывалась матричным элементом $V_{s/p} = \langle s_a | \hat{V} | p \rangle$, для которого $\eta_{s/p} = 1.42$, что существенно меньше коэффициентов $\eta_{s/spk}$. Отметим, что матричные элементы $V_{s/p}$, $V_{s/spk}$ определяют величину константы взаимодействия адатом—графен γ .

Другим важным параметром задачи является длина адсорбционной связи d, так как $V \propto d^{-2}$ и $\gamma \propto d^{-4}$. В соответствии с методом Харрисона, $d = r_a + r_c$, где r_a и $r_c = 0.77$ Å — атомные радиусы адатома и атома углерода. Так как $r_H = 0.53$ Å, то в случае адсорбции водорода имеем d = 1.30 Å, тогда как практически общепринятой считается $d \approx 1.1$ Å (см., например, [2,4]). Будем также считать $\lambda = d$. Результаты расчетов для водорода (как численных, так и с использованием аналитических выражений работы [12]) приведены в табл. 1. Здесь и далее, если не оговорено особо, все атомные и ионные радиусы, энергии ионизации и сродства к электрону берутся из справочника [14].

Как следует из табл. 1, водород по отношению к графену выступает как донор, причем во всех случаях $n_l \gg n_b$, а заряд $Z_a \approx 0.3-0.4$. При переходах от s-p-связи адатом-графен к связи $s-sp^k$ константа взаимодействия γ возрастает, зонная составляющая числа заполнения n_b

Таблица 2. Энергетические уровни (ε_a в eV), числа заполнения адатомов щелочных металлов (n_b), заряд адатомов (Z_a) и константа взаимодействия адатом-графен (γ)

Absorbate	Li	Na	K	Rb	Cs
\mathcal{E}_a	3.02	2.46	2.55	2.60	2.78
n_b p -	0.11 (0.11)	0.09(0.08)	0.04(0.04)	0.04(0.04)	0.03(0.03)
	0.43	0.27	0.14	0.12	0.10
s p-	0.18(0.18)	0.15(0.14)	0.08(0.08)	0.07(0.07)	0.05(0.05)
	0.81	0.50	0.25	0.22	0.18
$s p^2$ -	0.18(0.17)	0.15(0.14)	0.08(0.08)	0.07(0.06)	0.05(0.05)
	0.79	0.49	0.25	0.21	0.18
$s p^3$ -	0.17(0.17)	0.15(0.14)	0.08(0.07)	0.06(0.06)	0.05(0.05)
	0.76	0.48	0.24	0.21	0.17
$Z_a p$ -	0.89(0.89)	0.91(0.91)	0.96(0.96)	0.96(0.96)	0.97(0.97)
s p-	0.82(0.82)	0.85(0.86)	0.92(0.92)	0.93(0.93)	0.95(0.95)
$s p^2$ -	0.82(0.83)	0.85(0.86)	0.92(0.92)	0.93(0.94)	0.95(0.95)
sp^3 -	0.83(0.83)	0.85(0.86)	0.92(0.93)	0.94(0.94)	0.95(0.95)

Примечание: для n_b и Z_a без скобок приведены результаты численного расчета, в скобках — результаты расчета по аналитическим формулам [10]; в строках для n_b нижний ряд чисел представляет значения параметра γ .

уменьшается, а заряд адатома водорода увеличивается. Различия γ , n_b и Z_a для k = 1, 2, 3 сравнительно малы.

Теперь перейдем к щелочным металлам. Что касается адсорбционной связи, то в [12] были использованы значения $d = r_a + r_c$, а именно: 2.34, 2.63, 3.13, 3.25 и 3.39 Å для Li, Na, K, Rb и Cs соответственно. В работе [4] для того же ряда Li — Cs взяты величины d = 2.02, 2.63, 2.67, 3.01 и 2.92 Å, тогда как в [5], где рассматривается системы К/графен, за d принято значение 2.42 Å (см. также [7,8]). Таким образом, наши значения длин адсорбционной связи несколько выше, чем в [4,5]. Отметим, что в отличие от адсорбции водорода, где адатом располагается непосредственно над атомом углерода, в [11] считалось, что атом щелочного металла расположен в центре углеродных гексагонов. При этом $\varepsilon_a = \phi_0 - I + e^2/4\lambda$, где λ — расстояние от центра адатома до плоскости изображения, проходящей через центры атомов углерода [12]. Результаты расчетов для щелочных металлов представлены в табл. 2. Отметим, что во всех случаях $n_l \approx 0$ и 0.82 < $Z_a < 0.97$. Так же как

Таблица 3. Энергетические уровни (ε_a в eV), числа заполнения адатомов галогенов (n_b и n_l), заряды адтомов (Z_a) и константа взаимодействия адатом-графен (γ)

Adsorbate	F	Cl	Br	Ι
\mathcal{E}_a	-1.00	-0.49	-0.10	0.41
n_b p -	0.05(0.06)	0.14(0.17)	0.21(0.24)	0.31(0.32)
	8.00	3.29	2.38	1.63
s p-	0.04(0.05)	0.10(0.12)	0.15(0.17)	0.23(0.23)
	10.75	4.43	3.19	2.19
$s p^2$ -	0.03(0.04)	0.09(0.11)	0.14(0.16)	0.22(0.22)
	11.24	4.63	3.34	3.28
$s p^3$ -	0.03(0.04)	0.09(0.11)	0.14(0.16)	0.22(0.22)
	11.25	4.63	3.34	2.29
$n_l p$ -	0.47	0.37	0.28	0.12
s p-	0.48	0.41	0.35	0.28
$s p^2$ -	0.48	0.42	0.36	0.24
sp^3 -	0.48	0.42	0.36	0.24
$Z_a p$ -	-0.52(-0.53)	-0.51(-0.54)	-0.49(-0.52)	-0.42(-0.43)
s p-	-0.52(-0.52)	-0.51(-0.53)	-0.50(-0.52)	-0.51(-0.50)
$s p^2$ -	-0.52(-0.52)	-0.51(-0.53)	-0.50(-0.52)	-0.46(-0.45)
sp^3 -	-0.52(-0.52)	-0.51(-0.53)	-0.50(-0.52)	-0.46(-0.45)

Примечание: для n_b и Z_a без скобок приведены результаты численного расчета, в скобках — результаты расчета по аналитическим формулам [10]; в строках для n_b нижний ряд чисел представляет значения параметра γ .

и в случае водорода, при переходе к гибридизованным орбиталям γ увеличивается, n_b уменьшается, а заряд адатома Z_a растет, причем значения n_b и Z_a практически не зависят от k, а γ зависит слабо. Спад γ и n_b и рост Z_a в ряду Li \rightarrow Cs связаны главным образом с увеличением d. Отметим, что расчет [7] дает $Z_a \approx 1$ для всех щелочных металлов, тогда как в [8] для заряда лития получено значение 0.72.

Рассмотрим теперь адсорбцию атомов галогенов (F, Cl, Br, I), которые во внешней *p*-оболочке содержат одну дырку (вакансию). Такой адатом выступает как акцептор, захватывающий электрон подложки, тогда как адсорбированные атомы водорода и щелочных металлов выступают как доноры. Энергия атомного уровня относительно вакуума равна $\varepsilon_a^0 = -A$, где A — сродство к электрону. С учетом кулоновского

сдвига энергия дырочного уровня адатома относительно уровня Ферми имеет вид $\varepsilon_a = \phi_g - A - e^2/4\lambda$, где λ принимаем равным радиусу однократно заряженного аниона галогена r_i. При расчете матричных элементов нужно учитывать, что p_z-орбиталь адатома вытянута в отрицательном направлении оси z. Матричные элементы в данном случае таковы: $V_{p/p} = V_{pp\sigma} = \eta_{pp\sigma} (\hbar^2/m_0 d^2)$, где $\eta_{p/p} = \eta_{pp\sigma} = 2.22$ [13], $V_{p/spk} = (V_{sp\sigma} + \sqrt{k}V_{pp\sigma})/\sqrt{(k+1)} = \eta_{p/spk}\hbar^2/m_0 d^2)$, где $\eta_{p/sp1} = 2.57$, $\eta_{p/sp2} = 2.63$, $\eta_{p/sp3} = 2.63$. Под d будем понимать сумму атомных радиусов углерода и галогенов (в качестве последних берутся атомные радиусы Полинга [15]). Заряд адатома в данном случае есть $Z_a = -n_a$, так как заряд определяется переходом электронов с подложки на адатом. Результаты расчета энергетических параметров для галогенов сведены в табл. 3. При переходе от связи p-p к связям $p-sp^k$ константа взаимодействия у вновь возрастает и также, как и в рассмотренных ранее случаях, сравнительно слабо зависит от k. Аналогичным образом ведут себя числа заполнения n_b и n_l . В ряду $F \rightarrow I$ величина константы γ спадает, что объясняется увеличением ионных радиусов в этом ряду. При этом, однако, значения n_b увеличиваются, а n_l уменьшаются. Для адатомов фтора n_l в 10–15 раз больше n_b , причем это неравенство возрастает при переходе от связи p-p к связям $p-sp^k$. В случае адатомов йода $n_b \sim n_l$ для связей $p-s p^k$, тогда как для связи p-p значение n_b в 3 раза превосходит n_l. Для всех типов связи отрицательный заряд в ряду $F \rightarrow 1$ убывает по величине, меняясь, однако, очень слабо при переходе от фтора к брому. Интересно также отметить, что для адатомов F, Cl и Br заряд практически не зависит от типа связи адатом-графен, тогда как для адатома йода максимальный по модулю заряд соответствует связи p-sp. К сожалению, в известных нам работах по взаимодействию галогенов с графеном [4,9,10] рассматривались энергетические аспекты проблемы и данные по переходу заряда не приводились.

Подводя итоги, отметим в первую очередь вполне удовлетворительное согласие результатов численного расчета с расчетами по представленным нами в [12] аналитическим выражениям. Второй момент — достаточно слабая зависимость величины перехода заряда от типа орбитали атома углерода, участвующей в адсорбционной связи. Этот аспект проблемы, являющийся по данным ряда работ (см., например, [4,9,10]) важным при расчете энергетических характеристик адсорбционной системы, в случае перехода заряда не является определяющим. Необходимо, однако, подчеркнуть, что все сделанные

выводы следует подвергнуть эксперимнетальной проверке, так как сопоставление с расчетами других авторов не дает все же возможности говорить об адекватном теоретическом описании реальной ситуации.

Работа выполнена в рамках программы президиума РАН "Квантовая физика конденсированных сред" и ФАНИ (контракт № 02.740.11.0108 от 15.06.2009), ОФН РАН "Новые материалы", программы президиума РАН "Основы фундаментальных исследований нанотехнологий и наноматериалов" и целевой программы "Развитие научного потенциала высшей школы (2009–2010) Минобрнауки РФ № 2.1.1/2503".

Список литературы

- Castro Heto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. N 1. P. 109–162.
- McKay H., Wales D.J., Jenkins S.J., Verges J.A., de Andres P.L. // Phys. Rev. B. 2010. V. 81. P. 075425.
- [3] Soriano D., Munoz-Rojas F., Fernandez-Rossier J., Palacios J.J. // arXive: 1001.1263.
- [4] Klintenberd M., Lebegue S., Katsnelson M.I., Eriksson O. // arXive: 1001.3829.
- [5] Pinto H., Jones R., Goss J.P., Briddon P.R. // arXiv: 1003.0624.
- [6] Lee H., Ihm J., Cohen M.L., Louie S.G. // Nano Letters. 2010. V. 10. N 3. P. 793–798.
- [7] Jin K.-H., Choi S.-M., Jhi S.-H. // Phys. Rev. B. 2010. V. 82. P. 033414.
- [8] Khantha M., Cordero N.A., Molina L.M., Alonso J.A., Girifalco L.A. // Phys. Rev. B. 2004. V. 70. P. 125422.
- [9] Rudenko A.N., Keil F.J., Katsnelson M.I., Lichtenstein A.I. // arXiv: 1002.2536.
- [10] Wehling T.O., Katsnelson M.I., Lichtenstein A.I. // arXiv: 0903.2006.
- [11] Давыдов С.Ю., Сабирова Г.И. // Письма в ЖТФ. 2010. Т. 36. В. 24. С. 77-84.
- [12] Давыдов С.Ю., Сабирова Г.И. // ФТТ. 2011. Т. 53. В. 3. С. 608–616.
- [13] Harrison W.A. // Phys. Rev. B. 1983. V. 27. N 6. P. 3592-3604.
- [14] Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [15] Краткий справочник физико-химических величин / Под ред. К.П. Мищенко, А.А. Равделя. Л.: Химия, 1974. 200 с.