12 Компактный источник тока на основе воздушно-водородных топливных элементов со свободно-дышащими катодами

© С.А. Гуревич, Е.И. Теруков, О.И. Коньков, А.А. Томасов, Н.К. Зеленина, М.Е. Компан, М.В. Горохов, Е.В. Астрова, Д.А. Андроников, А.Г. Забродский

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Alex.Tomasov@mail.ioffe.ru

Поступило в Редакцию 24 октября 2010 г.

Приведены результаты разработки компактного источника тока на основе воздушно-водородных топливных элементов со свободно-дышащими катодами. При объеме 100 ст зисточник имеет энергоемкость $8.5 \text{ W} \cdot \text{h}$ и мощность 2 W, которая не зависит от температуры в интервале $(+5 \div +40)^\circ)C$ и влажности окружающего воздуха в диапазоне 40-98%. По удельным энергетическим характеристикам наша разработка превосходит воздушно-водородные аналоги, а по некоторым параметрам и источники на основе воздушно-метанольных топливных элементов.

В последнее время активно ведутся разработки и формируется рынок компактных источников тока (КИТ) на основе топливных элементов (ТЭ), как воздушно-водородных [1–3], так и воздушнометанольных [4–8]. В таких источниках используются ТЭ сравнительно малой мощности, от единиц до нескольких десятков ватт. Как правило, кислород на катод таких ТЭ поступает из окружающего воздуха одним из двух возможных способов: принудительно, с использованием микровентиляторов, или за счет естественной конвекции воздуха — ТЭ со "свободно-дышащим катодом". В первом варианте отсутствуют диффузионные ограничения на поступление кислорода к катоду, однако использование вентиляторов с неизбежностью ведет к снижению КПД, увеличению габаритов и веса источника. Поэтому мы в своих разработках КИТ на основе ТЭ предпочли вариант со свободно-дышащим катодом.

45

Характеристики КИТ на основе ТЭ в значительной мере определяются величиной удельной мощности, генерируемой мембранноэлектродными блоками (МЭБ). При выполнении настоящей работы мы сосредоточились на решении проблем оптимизации структуры МЭБ как по составу анодных и катодных каталитических слоев (загрузка Pt, содержание иономера) [9], так и по микроструктуре слоев. Каталитические слои формировались с помощью электрогидродинамического нанесения дисперсии каталитического порошка Е-ТЕК в спиртовом растворе иономера (Nafion), с использованием разрыхляющих добавок на основе углеродных нанотрубок [10]. В результате были изготовлены МЭБ со свободно-дышащими катодами с удельной мощностью более 170 mW/cm² при 20°С.

В ТЭ со свободно-дышащим катодом диффузионные ограничения поступления кислорода на катод могут играть существенную роль, и, кроме того, параметры водного баланса внутри элемента, а следовательно, и величина генерируемой мощности, как правило, оказываются сильно зависящими от температуры, влажности и условий конвекции воздуха над катодом [11-13]. При нарушении водного баланса может происходить как заливание водой каталитических слоев, ведущее к потере активности катализатора, так и пересыхание мембраны, приводящее к увеличению внутреннего сопротивления источника. Таким образом, для обеспечения стабильной работы ТЭ необходимо решать комплексную задачу, позволяющую реализовать эффективный доступ кислорода к катоду и снизить влияние параметров внешней среды на водный баланс ТЭ. В нашем случае ставилась задача обеспечения стабильной работы ТЭ (и источника в целом) в диапазоне влажности окружающего воздуха от 40 до 98%, в диапазоне темпераутр от +5 до +40°С.

Эта задача была решена путем установки на катодной стороне МЭБ газораспределительного элемента в виде пластины щелевого кремния [14] и углеродной бумаги. Пластина Si толщиной $380\,\mu\text{m}$ (удельное сопротивление $< 0.01\,\Omega\cdot\text{cm}$) имела узкие сквозные щели шириной $50\,\mu\text{m}$ при расстоянии между щелями $100\,\mu\text{m}$. Таким образом, величина пористости в рабочей области пластины размером $20 \times 20\,\text{mm}$ составляла 33%. Механическая прочность пластины обеспечивалась рамкой из монолитного Si шириной 1.5 mm, а также дорожками усиления в центральной области. В дополнение к пластине щелевого Si на катодной стороне МЭБ использовался также газораспределительный слой из углеродной бумаги Тогау (толщина 190 μ m). Значительное

аспектное отношение толщины пластины щелевого Si (380 µm) к ширине щелей (50 µm) обеспечивало слабую зависимость влажности слоя углеродной бумаги от условий конвекции воздуха над катодом. В то же время ширина щелей выбиралась достаточно большой, чтобы не возникали газодиффузионные ограничения для доступа кислорода к катодному каталитическому слою. Более того, поскольку ширина промежутков между щелями (100 µm) сопоставима с толщиной слоя углеродной бумаги (190 µm), поступающий через щели кислород далее легко распространяется по слою углеродной бумаги и равномерно "запитывает" всю поверхность каталитического слоя. Следует отметить, что пластина щелевого Si, покрытая тонким (0.1 µm) слоем золота выполняла также роль распределенного коллектора тока на катоде. Суммарное сопротивление контактов и мембраны в составе МЭБ, измеренное методом импедансной спектроскопии, составило менее $160 \,\mathrm{m}\Omega \cdot \mathrm{cm}^2$. На рис. 1, *а* и *b* показаны структура и общий вид МЭБ.

На рис. 1, с приведены нагрузочные и мощностные характеристики изготовленных единичных МЭБ, измеренные в диапазоне влажности окружающего воздуха от 50 до 98% и температур от +6 до +40°С. Относительная влажность водорода, подаваемого на анод, поддерживалась в пределах 5–7%. Как видно на рис. 1, с, во всем диапазоне изменения температуры и влажности окружающего воздуха мощность МЭБ меняется не более чем в 1.5 раза. Минимальная удельная мощность МЭБ превышает 110 mW/cm², что позволило уверенно реализовать КИТ мощностью 2W на основе 8 единичных МЭБ.

На рис. 2 приведены фотографии КИТ и сменного (перезаряженного) водородного картриджа, который устанавливется в корпусе источника. На боковых сторонах источника расположены две батареи МЭБ, в каждой по 4 единичных элемента, соединенных последовательно; батареи также соединены последовательно. Батареи закрыты пластмассовыми защитными панелями с прорезями для доступа воздуха к катодам МЭБ. В конструкции КИТ водород из картриджа подается в систему газораспределения, которая обеспечивает равномерную подачу топлива ко всем МЭБ. Батареи МЭБ соединены с DC–DC-преобразователем, который стабилизирует напряжение источника на уровне 5 V; на выходе установлен miniUSB-разъем.

Водородный картридж, расположенный в корпусе источника между батареями МЭБ, заполнен порошком интерметаллида состава

Рис. 1. *а* — структура МЭБ: *1* — катодный электрод, *2* — пластина щелевого Si, *3* — углеродная бумага Тогау, *4* — мембрана с нанесенными катодным и анодным каталитическими слоями, *5* — анодный электрод, *b* — фотография МЭБ (размеры 2.3 × 2.3 × 0.35 cm). *c* — нагрузочные и мощностные характеристики единичного МЭБ при работе в режиме свободно-дышащего катода: **Δ** — $T = 6^{\circ}$ C, $\circ - T = 20^{\circ}$ C, **■** — $T = 40^{\circ}$ C. Зависимости, показанные символами, соответствуют влажности воздуха 50%, символами, соединенными линиями, влажности воздуха 98%.

La_{0.75}Mn_{0.25} (изготовлен в ИПХВ РАН; Mm — мишметалл, в состав сплава входят Ce, La, Nd, Sm и ряд других металлов). Адсорбционаня способность этого интерметаллида по водороду составляет 1.2 wt%. В корпусе картриджа установлен газовый микроредуктор, который

49

Рис. 2. КИТ ФТИ (1) (объем $\approx 100 \text{ сm}^3$, вес 250 g), сменный водородный картридж (2) и выходной кабель с miniUSB-разъемом (3).

поддерживает давление H_2 на выходе картриджа в пределах от 0.02 до 0.2 atm во всем диапазоне температур. В картридже имеется также предохранительный клапан для аварийного сброса H_2 . Полезный объем картриджа составляет 15 сm³ при внешнем объеме 47 сm³; масса порошка интерметаллида 50 g, объем запасенного водорода составляет 6.5 sl.

На рис. 3 приведены результаты измерения выходной мощности и напряжения КИТ в зависимости от величины сопротивления нагрузки при различных температурах и влажности окружающего воздуха. Из рис. 3 видно, что кривые практически совпадают во всем диапазоне температур и влажности воздуха, а максимальная мощность источника превышает 2 W. Слабая зависимость мощности от параметров среды обеспечивается структурой МЭБ. Напряжение поддерживается практически на постоянном уровне DC–DC-преобразователем напряжения,

Рис. 3. Мощность (1) и напряжение (2) на выходе компактного источника тока в зависимости от величины сопротивления нагрузки: $\blacktriangle - T = 5^{\circ}$ C, $\bullet - T = 20^{\circ}$ C, $\blacksquare - T = 40^{\circ}$ C при 40% влажности воздуха; $\bigtriangleup - T = 5^{\circ}$ C, $\circ - T = 20^{\circ}$ C, $\Box - T = 40^{\circ}$ C при влажности воздуха.

если имеется запас мощности КИТ. На рис. 4 приведена зависимость выходного напряжения КИТ от времени при подключенной нагрузке, полученная на одной заправке водородного картриджа. Во время работы источника, в течение 4.25 h, выходная мощность поддерживалась равной 2 W, таким образом, эенргоемкость источника составила 8.5 W · h.

В табл. 1 приведены основные характеристики разработанного компактного источника тока в сравнении с известными аналогами. Как следует из приведенных данных, разработанный нами источник (КИТ ФТИ) не уступает зарубежным разработкам (часть из которых представлена на рынке), а по ряду параметров превосходит их. Необходимо подчеркнуть, что без изменения конструкции нашего КИТ ФТИ, только за счет увеличения его объема до 165 сm³ (см. КИТ фирмы Angstrom) или до 340 сm³ (КИТ фирмы Medis) можно получить удель-

Рис. 4. Зависимость выходного напряжения КИТ ФТИ от времени при подключенной нагрузке, полученная на одной заправке водородного картриджа: I — режим холостого хода, 2 — подключена нагрузка (I = 406 mA, P = 2.02 W), 3 — окончание ресурса картриджа. ($T = 22^{\circ}$ C, влажность воздуха 50%). Энергоемкость КИТ ФТИ – 8.5 W · h.

ную энергоемкость источника $270 \text{ W} \cdot h/l (95 \text{ W} \cdot h/kg)$ и $425 \text{ W} \cdot h/l (145 \text{ W} \cdot h/kg)$ соответственно. Эти характеристики существенно выше, чем у имеющихся аналогов, и по удельной энергоемкости на единицу объема могут конкурировать с Li-ионными аккумуляторами, имеющими сопоставимые массогабаритные параметры.

В табл. 2 приведены характеристики источников тока на основе воздушно-метанольных ТЭ [4–8]. Сравнение данных, привденных в табл. 1 и 2, позволяет сделать следующие выводы. Для источников небольшой мощности (≤ 5 W) при равных массогабаритных параметрах КИТ ФТИ по удельным энергетическим характеристикам превосходит воздушно-метанольные источники тока. При мощностях 15–25 W энер-

	Разработчик								
Характеристика	КИТ РТІ	Angstro MiniPak m Horizon Medis		Medis	Horizon Fuel Cell Technologies	Fuel Cell Store			
Напряжение, V	5	5	5	3.6-5.45	6-12	5-9			
Мощность, W	2.0	2	2	1.0	до 12	2.0			
Температура окружающей среды, °С	+5-+40	+10 - +30	0 - +40	+5-+50	+5-+35	ND			
Влажность окружающей среды, %	40-98	10-90	ND	ND	ND	ND			
Энергоемкость, W · h	8.5 45* 145**	12	12	20	DEC	DEC			
Удельная энергоемкость, W · h/l	85 270° 425**	72	70	60	DEC	DEC			
Удельная энергоемкость, W · h/kg	34 95* 145**	34	75	110	DEC	DEC			
Объем, cm ³	100	165	176	340	230	750			
Bec, g	250	350	155	180	225	450			
Источник H ₂	BRLC	BRLC	BRLC	BNRC	EC	EC			
Катод	FBC	FBC	FBC	FBC	FCA	FCA			

Таблица 1. Сравнительные характеристики воздушно-водородных КИТ

* — при объеме источника 165 cm³; ** — при объеме источника 340 cm³. DEC — определяется внешним картриджем; BRLC — встроенный сменяемый и допускающий многократную зарядку картридж; EC — внешний картридж; FBC — свободно-дышащий катод; FCA — принудительная конвекция воздуха; BNRC — встроенный несменяемый картридж; ND — нет данных.

гоемкость на единицу объема КИТ ФТИ выше, чем у метанольных источников.

Письма в ЖТФ, 2011, том 37, вып. 9

T

	Производитель							
Характеристика	Toshiba Dynario (2009)	Samsung	Motorola Lab	LG Chem Laptop computer	PolyFuel Inc Laptop computer			
Напряжение, V	5	4.2	3.3-4.2	ND	ND			
Мощность, W	2	2.6	2	25	15			
Температура окружающей среды, °С	+10-+35	+45	ND	ND	ND			
Влажность окружающей среды, %	30-90	ND	ND	ND	ND			
Энергоемкость, $W \cdot h$	12	8.3	96	250	150			
Удельная энергоемкость, W · h/l	50	55	155	250	325			
Удельная энергоемкость W · h/kg	40	45	220	ND	ND			
Объем емкости для метанола, ml	14	26.7	200	200	ND			
Объем, cm ³	235	150	620	1000	460			
Bec, g	290	182	435	ND	ND			
Источник Н2	MHC	MS	MP	MHC	MS			
Катод	FBC	FCA	FCA	FCA	FCA			

Таблица 2. Сравнительные характеристики воздушно-метанольных КИТ

FBC — свободно-дышащий катод; FCA — принудительная конвекция воздуха; ND — нет данных; MHC — метанол высокой концентрации; MS — раствор метанола; MP — чистый метанол.

Таким образом, технологии, использованные нами в разработке КИТ ФТИ, перспективны для создания параметрического ряда источников тока с высокими удельными энергетическими характеристиками путем масштабирования конструкции.

Работа выполнена при финансовой поддержке гранта президента РФ по поддержке ведущих научных школ (НШ-3306.2010.2), Федерального агентства по науке и инновациям (ГК № 02.527.12.9016 и ГК № 02.740.11.0051), а также при поддержке со стороны Национальной инновационной компании "Новые энергетические проекты".

Список литературы

- [1] http://www.angstrompower.com/products.html
- [2] http://www.horizonfuelcell.com
- [3] http://www.fuelcelstore.com/en/pc/viewPrd.asp?idcategory=0&idproduct=1401
- [4] Zhao T.S., Yang W.W., Chen R., Wu O.X. // J. Power Sources. 2010. V. 195. P. 3451–3462.
- [5] http://www.toshiba.com/taec/news/press_releases/2009/dmfc_09_580.jsp
- [6] Xie C., Bostaph J., Pavio J. // J. Power Sources. 2004. V. 136. P. 55-65.
- [7] PolyFuel Inc., Annual Merit review Proceedings Fuel Cells Hydrogen Program, DOE, USA, 2008. http://www.hydrogen.energy.gov/annual_review08_fuelcells,html,
- http://www.hydrogen.energy.gov/pdfs/review08/fc_46_wells.pdf
- [8] Seong Kee Yoon, Youngseung Na, Joung Y., Park J., Kim Y., Hu L., Song I., Cho H., Direct Methanol Fuel Cell Systems for Portable Applications, Fuel Cell Seminar & Exposition. Nov 18 2009, Samsung SDI.
- [9] Гуревич С.А., Горохов М.В., Зеленина Н.К., Кожевин В.М., Терукова Е.Е., Томасов А.А. // Письма в ЖТФ. 2009. Т. 35. В. 20. С. 27–33.
- [10] Горохов М.В., Кожевин В.М., Явсин Д.А., Томасов А.А., Зеленина Н.К., Гуревич С.А. // Альтернативная энергетика и экология. 2008. № 10. С. 26– 30.
- [11] Tabe Y, Park S.-k., Kikuta K., Chikahisa T., Hishinuma Y. // 2006. J. Power Sources. V. 162. N 1. C. 58–65.
- [12] Hottinen T. Performance limitations and improvements of small-scale freebreathing polymer electrolyte membrane fuel cells / Dissertation for the degree of Doctor of Science in Technology. Finland: Helsinki University of Technology, 2004. 50 p. ISBN 951–22–7255-5.
- [13] Mikkola M. Studies on limiting factors of polymer electrolyte membrane fuel cell cathoder performance / Dissertation for the degree of Doctor of Science in Technology. Finland: Helsinki University of Technology, 2007. 79 p. ISBN 978– 951–22–8590–7.
- [14] Астрова Е.В., Андроников Д.А., Горохов М.В., Зеленина Н.Л., Кожевин В.М., Теруков Е.И., Томасов А.А., Гуревич С.А. // Письма в ЖТФ. 2010. Т. 36. В. 11. С. 1–9.