05;07 Проявление метастабильной кубической модификации в мелкодисперсных соединениях A₂B₆

© И.Х. Акопян, Т.И. Иванова, М.Э. Лабзовская, Б.В. Новиков, А. Эрдни-Горяев

НИИ физики им. В.А. Фока СПбГУ, Санкт-Петербург НПП "Буревестник", Санкт-Петербург E-mail: bono1933@mail.ru

Поступило в Редакцию 21 июля 2009 г.

В поликристаллических порошках CdS и CdSe с размерами зерен в несколько десятков нанометров методами рентгеновской дифракции обнаружено присутствие метастабильной кубической модификации. Получены спектры отражения и фотолюминесценции кубической модификации CdS в интервале 77–295 К. Определены энергия основного экситонного перехода и коэффициент температурного смещения ширины запрещенной зоны.

Как показано теоретическими исследованиями, уменьшение размеров кристаллов может приводить к стабилизации в них неравновесной кристаллической структуры [1,2]. Это положение находит и экспериментальное подтверждение. Так, в частности, при выращивании кристаллов двуйодной ртути в порах нанометровых матриц нами была обнаружена при температурах (77–295 K), т.е. много ниже температуры структурного ($\alpha \rightarrow \beta$)-фазового перехода, стабилизация высокотемпературной β -модификации [3]). Аналогичный эффект-образование нанокристаллов в форме, отличной от стабильной для объемных кристаллов структуры, наблюдался в галогенидах меди [4,5]. Недавно наличие неустойчивой гексагональной фазы было обнаружено в наноразмерных нитевидных кристаллах арсенида галлия [6,7].

Особый интерес с этой точки зрения представляют полупроводниковые соединения сульфида и селенида кадмия, являющиеся модельными оптическими объектами и имеющие большое практическое применение. Оба соединения существуют в термодинамически устойчивой гексагональной (вюрцитной) фазе, оптические свойства которой изучены весьма подробно [8]. Хотя получение кубической (сфалеритной)

94

модификации CdS при химических реакциях в растворах известно достаточно давно [8], информация о метастабильной кубической фазе весьма ограничена. В последние годы появились данные о влиянии размеров на кристаллическую форму CdS и CdSe. Имеются сообщения о регистрации кубической модификации при формировании тонких эпитаксиальных слоев на кристаллических кубических подложках [9–11], о кубической структуре наночастиц, полученных в результате химических реакций с последующим осаждением из коллоидных растворов [12–15]. Структурные исследования изолированных наночастиц показали, что частицы с размерами $d \leq 4$ nm имеют кубическую структуру, частицы с размерами $d \geq 6-10$ nm — вюрцитную. Для промежуточных размеров образуется либо кубическая структура с дефектами упаковки, либо двухфазная смесь.

В данной работе исследована кубическая фаза в порошкообразном материале, полученном химическим способом в промышленных условиях. Использовались коммерческие порошки CdS и CdSe марки "Химически чистый, для полупроводников" и порошки, полученные растиранием монокристалла CdS. Кристаллическая структура и размер зерен контролировались рентгеновским методом. Далее были проведены исследования спектров фотолюминесценции (ФЛ) и фотоотражения. Спектр ФЛ возбуждался азотным лазером с длиной волны 337 nm. Исследования проводились в температурном диапазоне 77–295 К.

Рентгенодифракционные спектры образцов измерялись на автоматическом дифрактометре ДРОН-8 в медном излучении. Условия съемки: напряжение 40 kV, анодный ток 30 mA, диапазон углов сканирования 2Θ от 23 до 100° , шаг сканирования 0.02° , время измерения в точке 1-10 s. Обработка спектров (предварительная обработка, качественный анализ, количественный анализ, расчет теоретической рентгенограммы, расчет размеров и микродеформаций) осуществлялась в различных блоках программного комплекса PDWin. Эталонные порошковые рентгенограммы для гексагональной и кубической модификаций CdS и CdSe для сравнения с экспериментальными спектрами были взяты из базы порошковых данных PDF-2.

Расчет инструментальной функции осуществлялся по структурным данным для гексагональной и кубической модификаций CdS и CdSe, взятым из базы структурных данных для неорганических веществ ISCD.

Для формирования ровной поверхности образцы для рентгеновских исследований приготовлялись нанесением на стеклянную подложку соответствующей суспензии на спирту.

Рис. 1. Рентгенограммы поликристаллических порошков CdS: a — исходного коммерческого; b и c — полученного растиранием монокристалла; b — размер 110 nm и c — 8 nm.

Идентификация полученных дифракционных пиков CdS (рис. 1, *a*) показала, что исходный коммерческий порошок содержит 53 массовых процента кубической и 47 массовых процентов гексагональной фазы. На рисунке рефлексы кубической фазы отмечены буквой С. Исследование полуширины дифракционных индексов позволило оценить по порядку

Рис. 1 (продолжение).

величины размеры частиц обеих модификаций. Для гексагональных частиц эта величина составила около 220 nm, для кубических — около 70 nm.

В спектре ФЛ исходного порошка CdS, содержащего две кристаллические фазы, при 77 К (рис. 2, *a*, кривая *I*) обнаружены две интенсивные полосы — при 489 nm (2.535 eV) и 509 nm (2.435 eV). Несомненно, что первая полоса, обозначенная на рисунке WZ, принадлежит гексагональной фазе CdS [8]. Можно предположить, что полоса 509 nm, обозначенная ZS, связана с излучением кубической модификации. Спектр отражения исходного порошка при T = 77 К (рис. 3, кривая *I*) обнаруживает очень размытую дисперсионную кривую отражения в области 510 nm, что не противоречит высказанному предположению. Для сравнения на рис. 3 (кривая 2) приведен спектр отражения гексагонального монокристалла CdS, содержащий структуру, обусловленную экситонами, образованными зоной проводимости и валентной зоной, расщепленной кристаллическим полем.

Обе полосы излучения сохраняются в спектре ФЛ коммерческого порошка при повышении температуры до комнатной, уширяясь и смещаясь в сторону меньших энергий (рис. 2, *b*). Положения максимумов полос при 295 К — 508 nm (2.440 eV) и 530 nm (2.339 eV) для гексагональной и кубической фаз соответственно. Коэффициенты линейного

Рис. 2. Спектры фотолюминесценции: a — поликристаллического исходного порошка (1), монокристалла (2) и порошка, полученного растиранием монокристалла (3), T = 77 K; b — исходного поликристаллического порошка CdS при различных температурах: 1 - T = 77 K, 4 - T = 295 K.

температурного сдвига структуры, определенные из спектров ФЛ, для интервала 77–295 К оказываются равными для обеих фаз и составляют $-4.4 \cdot 10^{-4}$ eV/deg. Для гексагональной модификации CdS эта величина хорошо совпадает со значением $-3.8 \cdot 10^{-4}$ eV/deg, полученным в [16] для интервала 110–295 К.

Рис. 3. Спектры отражения при T = 77 K поликристаллического порошка (1) и монокристалла CdS (2).

Важно отметить, что соотношение интенсивностей полос сохраняется при повышении температуры, что также свидетельствует в пользу того, что обе полосы принадлежат разным излучателям, т.е. длинноволновая полоса не обусловлена переходами в гексагональных кристаллах.

В порошке, приготовленном из монокристалла CdS, в процессе растирания также возникала кубическая модификация. На рис. 1, *b* приведена рентгенограмма растертого порошка с размером зерен гек-

сагональной фазы 110 nm, в котором кубическая фаза отсутствовала, на рис. 1, c — сильнорастертого порошка, в котором доля кубической фазы с размером 8 nm составляла 18%. Спектр ФЛ порошка, полученного растиранием монокристалла, содержащего обе фазы, показан на рис. 2, a (кривая 3). Как видно из рисунка, полоса экситонного излучения гексагонального CdS несколько смещена в коротковолновую сторону относительно положения в монокристалле (кривая 2), что естественно связать с размерным эффектом в электронной структуре зерен, образовавшихся в результате растирания порошка. По величине максимального смещения (15 meV) оценен минимальный размер зерен гексагональной фазы — ~ 15 nm.

В связи с тем что максимум полосы ZB расположен в спектральной области, где могла бы наблюдаться так называемая "зеленая люминесценция" (ЗФЛ) [8], вызванная собственными дефектами, была исследована ФЛ монокристаллов CdS, как имеющих ЗФЛ, так и без нее. Во-первых, было подтверждено, что ЗФЛ гаснет в монокристалле уже при температуре немного выше 100 К. Во-вторых, спектр ФЛ, который мы относим к излучению метастабильной кубической фазы, не зависит от того, имеют ли исходные образцы зеленую ФЛ или нет.

Аналогичный результат возникновения кубической фазы в процессе растирания был получен для CdSe. Исходный коммерческий порошок со средним размером частиц 200 nm обладал исключительно гексагональной структурой. Сильное и длительное растирание в агатовой ступке привело к появлению кубической модификации со следующим соотношением фаз в порошке — 27% кубической фазы и 73% гексагональной. Такое увеличение доли кубической фазы происходит при уменьшении размеров обеих фаз до 10–15 nm.

Итак, приведенные выше данные показывают, что поликристаллические порошки CdS и CdSe, полученные либо химическим путем, либо растиранием монокристаллов, могут находиться в форме метастабильной кубической фазы.

По результатам рентгеновской дифракции для обоих исследованных веществ максимальным размером зерен, при котором регистрируется кубическая фаза, является величина ≈ 70 nm, что на порядок больше приведенных в [12–15] размеров изолированных наночастиц. В результате химических реакций в растворах [12–15] частицы CdS (SdSe) образуются в форме кубической структуры, которую они сохраняют в процессе роста до размеров 4–5 nm. Дальнейший рост приводит к тому,

что структура полупроводниковых наночастиц становится стабильной вюрцитной. Очевидно, что в порошках при агтломерации осажденных из растворов малых кубических частиц переход в стабильную модификацию происходит при больших размерах образований, чем в ходе реакций в растворах. Присутствие WZ-фазы в порошках может быть связано как с возникновением ее в процессе химической реакции, так и с переходом со временем метастабильной ZB-фазы в устойчивую WZ [17].

Возникновение ZB-фазы при растирании объемных кристаллов можно связать с влиянием давления. Известно, что под действием давления исследуемые соединения претерпевают фазовый переход вюрцит-каменная соль. Но после снятия давления соединения переходят к структуре, представляющей смесь ZB- и WZ-фаз [17].

Следует заметить, что большие размеры частиц кубической фазы в порошках позволяют утверждать, что определенные из их оптических спектров энергетические параметры характеризуют объемные образования CdS.

Работа выполнена при финансовой поддержке РФФИ (проект 08-02-00954).

Список литературы

- [1] Петров Ю.И. Кластеры и малые частицы. М.: Наука, 1975. 331 с.
- [2] Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2005. 416 с.
- [3] Акопян И.Х., Лабзовская М.Э., Новиков Б.В. и др. // ФТТ. 2007. В. 7. С. 1310.
- [4] Акопян И.Х., Гайсин В.А., Логинов Д.К. и др. // ФТТ. 2005. Т. 47. В. 7. С. 1323.
- [5] Аколян И.Х., Голубков В.В., Дятлова О.А. и др. // ФТТ. 2008. Т. 50. В. 7. С. 1300.
- [6] Zanolli Z., Fuchs F., Furthm et al. // Phys. Rev. B. 2007. T. 75. P. 245121.
- [7] Novikov B.V., Serov S.Yu., Filosofov N.G. et al. // 17th Int. Symp. "Nanostructures: Physics and Technology". Minsk, 2009. P. 186.
- [8] Медведев С.А. Физика и химия соединений А₂В₆. М.: Мир, 1970. 624 с.
- [9] Mash T.N., Fuchs F. et al. // J. Appl. Phys. 1963. V. 34. P. 3636.
- [10] Yodo T., Tanaka S. // J. Appl. Phys. 1992. V. 72. N 7. P. 2781.
- [11] Nagai T. et al. // Ph. St. Sol. B. 2002. V. 229. P. 610.
- [12] Rossetti R., Nakahara S., Brus L.E. // J. Chem. Phys. 1983. V. 79. N 2. P. 1086.

- [13] Ricolleau C. et al. // J. Cryst. Growth. 1998. V. 1159. P. 861.
- Banerjee R., Jayakrishnan R., Ayyub P. // Phys.: Condens. Matter. 2000. V. 12. P. 10647.
- [15] Kotkata M.F., Masoud A.E., Mohamed M.B. et al. // Physica E. 2009. V. 41. P. 640.
- [16] Anedda A., Fortin F. // Phys. St. Sol. A. 1976. V. 36. P. 385.
- [17] Tolbert S.H., Alivisatos A.P. // J. Chem. Phys. 1995. V. 102. N 11. P. 4642.