10,11

Изучение роли октаэдрических групп при фазовом переходе в кристалле Rb₂KMoO₃F₃ методом инфракрасного поглощения

© Ю.В. Герасимова¹, А.С. Орешонков¹, А.Н. Втюрин¹, А.А. Иваненко¹, Л.И. Исаенко², А.А. Ершов¹, Е.И. Погорельцев¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Институт геологии и минералогии СО РАН, Новосибирск, Россия E-mail: jul@iph.krasn.ru

(Поступила в Редакцию 15 апреля 2013 г.)

Получены спектры инфракрасного поглощения оксифторида $Rb_2KMoO_3F_3$ в области частот, соответствующих валентным колебаниям Mo-O анионного октаэдра, с целью выяснения их роли при фазовом переходе. Проведен полуэмпирический расчет двух возможных конфигураций квазиоктаэдрических групп MoO₃F₃. Результаты исследований показали, что при фазовом переходе (T = 197 K) в структуре кристалла часть октаэдров меняет локальную симметрию с C_{3v} на C_{2v} .

Работа выполнена при финансовой поддержке РФФИ "мол_а" № 12-02-31205, ФЦП "Научные и научнопедагогические кадры инновационной России". Соглашение № 8379 и Междисциплинарного интеграционного проекта СО РАН № 28.

1. Введение

Исследование соединений, содержащих в структуре полярные молекулярные группы, становится все более актуальным в связи с поиском полярных сред, обладающих пироэлектричеством, сегнетоэлектричеством, пьезоэлектричеством, а также новых активных материалов для электро- и нелинейной оптики. Одним из представителей таких соединений является кристалл оксифторида $Rb_2KMoO_3F_3$. По данным рентгеноструктурного анализа кристаллическая решетка $Rb_2KMoO_3F_3$ при комнатной температуре имеет кубическую симметрию с пространственной группой $Fm\bar{3}m$ (Z = 4) (рис. 1, a [1]).

В то же время fac- и тег-конфигурации [2] (рис. 1, *b*) расположения кислородных и фторных лигандов соответствуют тригональной C_{3v} либо ромбической C_{2v} симметрии псевдооктаэдрических групп MoO₃F₃. Так как обе конфигурации нецентросимметричны, то данные молекулярные группы должны обладать значительными дипольными моментами в неполярной фазе FM3m. Для сохранения макроскопической кубической симметрии кристалла анионные группы должны быть ориентационно разупорядочены. Однако при искажении кристаллической структуры, например в результате фазового перехода, можно ожидать их полного или частичного упорядочения.

Авторами работ [2–7] в кристаллах Rb₂KMoO₃F₃ обнаружены два последовательных фазовых перехода, при 328 К и 182 К, причем обе искаженные фазы являлись полярными. В более поздних исследованиях [1] в данном соединении наблюдался лишь один фазовый переход при 195 К в неполярную низкотемпературную фазу. Эксперимент по исследованию данного кристалла методом комбинационного рассеяния (КР) [8] подтвердил существование структурного фазового перехода

при ~ 185 К. На основании анализа температурной зависимости сдвига частот, пропорционального параметру порядка, и изменения формы спектральных линий было установлено, что квазиоктаэдры $[MeO_3F_3]^{3-}$ находятся преимущественно в fac-конфигурации, а данный фазовый переход является превращением первого рода типа порядок-беспорядок и сопровождается упорядочением анионов F/O.

Настоящая работа по исследованию инфракрасных спектров кристалла Rb₂KMoO₃F₃ была предпринята с целью дальнейшего изучения роли октаэдрических анионов при структурном фазовом переходе.

2. Методика эксперимента и обработки данных

Эксперименты по ИК-поглощению проводились на образцах оксифторида Rb₂KMoO₃F₃, описанных в [1].

Спектры ИК-поглощения были получены на вакуумном Фурье-спектрометре Bruker-Vertex 80V на прессованных совместно с бромидом калия таблетках диаметром 13 mm и толщиной ≈ 0.55 mm. Микрокристаллы Rb₂KMoO₃F₃ тщательно растирались в порошок и смешивались с KBr, также тщательно перетертым, в пропорциях 1:100 соответственно. Смесь прессовалась под вакуумом гидравлическим прессом при давлении от 10 и до 10⁴ N/cm². Спектральное разрешение составляло 0.2 cm⁻¹. Температурные исследования проводились с использованием криостата OptistatTM AC-V 12a 0.25W@4K в температурном диапазоне 298–188 К. В качестве источника света использовался глобар (*U*-образная дуга из карбида кремния), испускающий инфракрасное излучение среднего диапазона.

Рис. 1. *а*) Структура элементарной ячейки кубической фазы кристалла $Rb_2KMoO_3F_3$, *b*) Локальная симметрия октаэдрического иона $MoO_3F_3^{3+}$.

Рис. 2. ИК-спектр кристалла Rb₂KMoO₃F₃ при комнатной температуре.

3. Экспериментальные резульаты и их обсуждение

На рис. 2 представлен полученный ИК-спектр кристалла $Rb_2KMoO_3F_3$ при комнатной температуре в области частот 500-1500 cm⁻¹. Спектральные линии в области частот 775-925 cm⁻¹ соответствуют валентным

колебаниям Мо–О анионного полиэдра МоО₃F₃. Следует отметить, что частоты линий ИК-спектра и спектра комбинационного рассеяния [8] совпадают; это свидетельствует о том, что уже в неполярной кубической фазе имеются локальные полярные области, в которых центр симметрии отсутствует.

Трансформация спектров при понижении температуры представлена на рис. 3, она выявляет наличие аномальных изменений ниже 197 К и подтверждает существование фазового перехода, связанного с изменениями во фторкислородном квазиоктаэдре.

В связи с тем что анион MoO_3F_3 может иметь симметрию как C_{3v} , так и C_{2v} , был выполнен полуэмпирический расчет спектра колебаний локализованного октаэдра MoO_3F_3 с использованием программного пакета LADY [9]. Для расчета межионных взаимодействий была использована упрощенная модель Борна-Кармана [10]. Данная модель основана на представлении потенциальной функции в виде суммы потенциалов $\varphi(r)$ взаимодействий структурных единиц, которые зависят только от расстояний между ними. При этом учитываются только силовые константы растяжения (сжатия) связей $A = \partial^2 E / \partial^2 R$, где E — энергия, R — длина связи. В рамках упрощенной модели Борна-Кармана предполагается, что вид потенциала парного ближнего взаимодействия $\varphi(r)$ одинаков для всех пар атомов

$$A = \lambda \exp(-r_{ij}/\rho), \tag{1}$$

где r_{ij} — межатомное расстояние, λ — эмпирический параметр, характеризующий взаимодействие данной пары атомов. Для нахождения параметров расчетной модели была написана программа оптимизации значений λ , ρ .

Результат численного моделирования показал: если анионный полиэдр имеет fac-конфигурацию, то в спектре ИК-поглощения должны наблюдаться две линии 836 и 907 сm⁻¹, а если имеет место mer-конфигурация, то должны присутствовать линии с максимумами 798, 881

Рис. 3. Трансформация линий ИК-поглощения, соответсвующих валентным колебаниям Мо-О анионов $MoO_3F_3^{3-}$ при фазовом переходе.

и 891 сm⁻¹. Сравнение экспериментальных данных с расчетными спектрами двух возможных конфигураций (рис. 4) демонстрирует, что ни одна из них по отдельности полностью не описывает спектральный контур. Однако можно отметить, что результат численного моделирования fac-конфигурации наиболее близок к экспериментальным спектрам, полученным выше точки фазового перехода (рис. 4, *a*). Некоторая асимметричность линии 828 сm⁻¹ может быть связана с частичным снятием вырождения этого дважды вырожденного колебания из-за структурной неупорядоченности кубической фазы.

При понижении температуры ниже точки перехода ситуация меняется: в спектральном контуре появляются дополнительные линии, характерные для тегконфигурации иона (рис. 4, *c*). В части спектра, соответ-

Рис. 4. Сравнение экспериментальных спектров с расчетными спектрами возможных конфигураций октаэдра при различных температурах. *a*) T = 298 K, fac-конфигурация, *b*) T = 298 K, mer-конфигурация, *c*) T = 188 K, mer-конфигурация.

ствующей валентным колебаниям Мо–О, в искаженной фазе кристалла присутствуют линии как fac-, так и текконфигураций, при этом, если до фазового перехода квазиоктаэдры в структуре имели преимущественно C_{3v} симметрию, то ниже перехода, возможно, часть их приобрела симметрию C_{2v} .

Дипольный момент fac-конфигурации направлен вдоль одной из осей третьего порядка кубической ячейки, а в случае mer-конфигурации — по одной из осей четвертого порядка. Таким образом, для образования полярной фазы, кроме самого дипольного момента (который у любой из конфигураций существует еще в кубической фазе), необходимо, чтобы возникла дальняя корреляция ориентаций этих дипольных моментов. Можно предположить, что возникающие, хоть и в незначительном количестве, mer-полиэдры препятствуют процессу упорядочения.

4. Заключение

В настоящей работе получены и интерпретированы спектры инфракрасного поглощения оксифторида $Rb_2KMoO_3F_3$ в области валентных колебаний связей Mo-O анионного октаэдра MoO_3F_3 . Положения частот линий ИК-спектра и спектра комбинационного рассеяния совпадают, что свидетельствует о том, что уже в неполярной кубической фазе имеются локальные полярные области.

Выполнен полуэмпирический расчет двух возможных конфигураций данного октаэдра. Сравнение изменений в ИК-спектрах, экспериментально наблюдаемых при фазовом переходе, с результатами численного моделирования показывает, что фазовый переход при 197 К связан с частичным изменением конфигурации и симметрии фтор-кислородных псевдооктаэдров.

Список литературы

- Е.И. Погорельцев, Е.В. Богданов, М.С. Молокеев, В.Н. Воронов, Л.И. Исаенко, С.А. Журков, Н.М. Лапташ, М.В. Горев, И.Н. Флёров. ФТТ 53, 1136 (2011).
- [2] K. Von Dehnicke, G. Pausewang, W. Rudoeff. Z. Anogran. Allegem. Chem. **366**, 64 (1969).
- [3] G. Peraudeau, J. Ravez, P. Haggenmuller. Solid State Commun. 27, 591 (1978).
- [4] S.C. Abrahams, J.L. Bernstein, J. Ravez. Acta Cryst. B 37, 1332 (1981).
- [5] J. Ravez, G. Peraudeau, H. Arend, S.C. Abrahams, P. Haggenmuller. Ferroelectrics 26, 767 (1980).
- [6] G. Peraudeau, J. Ravez, H. Arend. Solid State Commun. 27, 515 (1978).
- [7] M. Couzi, V. Rodriguez, J.P. Chaminade, M. Fouad, J. Ravez. Ferroelectric 80, 109 (1988).
- [8] А.С. Крылов, Е.М. Меркушева, А.Н. Втюрин, Л.И. Исаенко. ФТТ 54, 1191 (2012).
- [9] M.B. Smirnov, V.Yu. Kazimirov. LADY: software for lattice dynamics simulations. JINR communications. E14-2001-159, Dubna (2001).
- [10] M. Smirnov, R. Baddour-Hadjean. J. Chem. Phys. 121, 2348 (2004).