06 Апробация туннельных МДП-структур на *p*-кремнии в качестве детекторов ядерных частиц

© А.М. Иванов, Н.Б. Строкан, И.М. Котина, Л.М. Тухконен, В.В. Лучинин, А.В. Корляков, А.М. Ефременко

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ПИЯФ им. Б.П. Константинова РАН, Гатчина, Ленингр. обл. Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" E-mail: alexandr.ivanov@mail.ioffe.ru

Поступило в Редакцию 2 декабря 2008 г.

Исследовались структуры класса металл-диэлектрик-полупроводник (МДП) с туннельным диэлектриком из нитрида алюминия, выполненные на высокоомном кремнии p-типа проводимости. Определялись эффективность собирания заряда и разрешение по энергии при тестировании α -частицами с энергией 5.4 MeV. Кроме того, исследовались природа шумов и состояние границы раздела диэлектрик-p-Si. Показано, что параметры исследованных структур в качестве детекторов близки к широко используемым в настоящее время детекторам с барьером Шоттки на n-Si (Au-n-Si). Снижение содержания глубоких центров на границе раздела позволит МДП-структурам на p-Si успешно конкурировать с детекторами на n-Si вследствие большей чистоты исходного материала.

PACS: 61.82.Fk, 61.80.-x

Барьеры Шоттки с тунельно-прозрачным диэлектриком из SiO₂ интенсивно исследовались в варианте низкоомного кремния (см., например, [1–3]). Структуры на высокоомном кремнии вызывали существенно меньший интерес. Одной из причин была необходимость избегать высокотемпературных обработок, как правило, приводивших к ухудшению электрических параметров исходного высокоомного материала. В качестве диэлектрика, синтезируемого при низких температурах, весьма привлекателен нитрид алюминия (AlN), обладающий большим

41

значением диэлектрической проницаемости ($\varepsilon = 9$) и имеющий превосходные химические, термические и оптические свойства.

В работе [4] были описаны общие характеристики двух типов структур на p-Si с нанотолщинными пленками AlN, полученными методом реактивного магнетронного распыления: A1-A1N-(pSi)-Pd и Pd-AlN-(pSi)-Pd. Структуры имели выпрямляющий барьер со стороны AlN-пленки независимо от работы выхода металла. При этом под пленкой AlN в *p*-кремнии даже при отсутствии внешнего напряжения существовал инверсионный слой, что свидетельствует о большой величине потенциального барьера. Поэтому весьма интересным представляется проведение апробации таких структур в качестве детекторов ядерных частиц. В случае стабильности их характеристик при переходе к более чистому p-Si (удельное сопротивление ρ порядка сотни $k\Omega \cdot cm$) они могут составить конкуренцию существующим детекторам с барьером Шоттки на *n*-Si. Значения ρ для *n*-Si заметно меньше, следовательно, при одинаковом напряжении смещения детекторы имеют меньшую рабочую область — W (протяженность области объемного заряда, смещенной в обратном направлении структуры). Отметим, что характеристики барьера Al-(pSi) оказываются нестабильными во времени и детекторы на основе барьеров Шоттки на p-Si в настоящее время практически не используются [5]. В данной работе исследуются важные для детекторов ядерных частиц характеристики структур с промежуточным диэлектриком AlN.

1. Осаждение слоев AlN осуществляли в высоковакуумной камере, оснащенной турбомолекулярным насосом и магнетронной системой распыления с высокочастотным генератором. В качестве источника осаждаемого материала использовалась алюминиевая мишень, распыляемая в аргоново-азотной смеси $P_{\rm Ar+N_2} = 3 \cdot 10^{-3}$ mm/Hg (при $P_{\rm Ar} = P_{\rm N_2}$). Остаточное давление в камере составляло $(1-5) \cdot 10^{-5}$ mm/Hg. Процесс магнетронного распыления проводили при постоянном напряжении смещения "катод (мишень)–анод" в диапазоне $60 \div 150$ V. Скорость осаждения составляла $1-1.2 \, \mu$ m/h.

Типовая структура имела площадь $0.44 \,\mathrm{cm}^2$ и была изготовлена на *p*-кремнии с $\rho \approx 6 \,\Omega \cdot \mathrm{cm}$ и длиной диффузии электронов $L_D = 1.4 \,\mathrm{mm}$. Толщина пленки AlN была порядка 30 Å. Зависимость емкости (*C*) от напряжения обратного смещения (U_{rev}), измеряемая на частоте 1 kHz, в координатах $1/C^2(U_{rev})$ была линейной с величиной наклона, соответствующей ρ подложки (*p*-Si).

2. Основными характеристиками детектора являются эффективность собирания заряда (ССЕ), разрешение по энергии (FWHM — ширина спектральной линии на уровне 0.5 от максимума), величина шума. Указанные параметры определялись при тестировании α -частицами с энергией 5.4 MeV на стандартной спектрометрической установке. Число каналов амплитудного анализатора составляло 4000. Постоянная времени формирования импульса в тракте усиления (θ) варьировалась в диапазоне 1 \div 10 µs.

При измерениях ССЕ и шумов к исследуемому детектору параллельно подключался p^+ -*n*-детектор, служащий эталоном. Этот детектор был получен в режиме "мелкой" диффузии бора в *n*-кремний [6]. Толщина "входного окна" детекторов такого типа весьма мала (от 200 Å в кремниевом эквиваленте), чему способствует сильное электрическое поле, возникающее вследствие резкого профиля введенного бора. Сказанное позволяет принять, что для p^+ -*n*-детектора ССЕ достигает 1.0.

3. На рис. 1 приведена зависимость $CCE(U_{rev})$. Зависимость имеет типичный вид с "полочкой", означающей насыщение переноса, созданного α -частицей заряда. Однако при сравнении с эталонным детектором численное значение ССЕ составило в среднем 0.986. Отметим также большие потери заряда даже при напряжениях, обеспечивающих расположение трека (пробег α -частицы составляет 26 μ m) полностью в области поля W. Так, беря вторую точку графика, имеем потери 20% (*ССЕ* \approx 0.8), несмотря на значение $W = 32.8 \,\mu$ m и величину напряженности поля у поверхности порядка 1 kV/cm.

Зависимость разрешения за вычетом вклада шумов FWHM(U_{rev}) представлена на рис. 2. Шумы вносят заметный вклад, поскольку плотности токов структур при $U_{rev} \approx 100$ V составляют несколько μ A/cm². Величины шума приведены на правой оси ординат для двух значений времени формирования $\theta = 1.0$ и 10μ s. Разрешение при малых смещениях невысоко, но существенно улучшается с ростом U_{rev} в полном соответствии с переходом к участку ССЕ ≈ 1.0 на рис. 1. Построение зависимости FWHM непосредственно в функции потерь заряда $\lambda = 1$ –ССЕ (см. фрагмент рис. 1) показало, что величины связаны линейно. Коэффициент пропорциональности, отражающий неоднородность потерь по площади детектора, оказался значительным — K = 0.46. Это следует отнести к неоднородностям поверхности *p*-Si. Отметим, что в литературе, в принципе, встречаются меньшие величины вплоть до K = 0.06 [7].

Рис. 1. Эффективность собирания заряда в функции приложенного обратного смещения. За единицу принята эффективность эталонного детектора. Фрагмент — зависимость разрешения по энергии от величины потерь заряда, %: $\lambda = 100(1-\text{CCE})$.

Что касается шумов, то их рост при переходе от $\theta = 1.0 \text{ к} 10 \,\mu\text{s}$ (см. рис. 2) указывает на их низкочастотный характер. Дополнительно было проведено сравнение с шумами эталонного p^+ -*n*-детектора. Ранее [8] было показано, что при протекании в них тока возникает "дробовой" шум. Квадрат значений шума в функции тока $(N^2(I))$ линеен, и наклон составляет 1.16 keV²/nA для $\theta = 1 \,\mu\text{s}$. В сравнительных измерениях токи детектора с AlN диэлектриком и эталонного варьировались подсветкой в диапазоне μ A (т.е. в диапазоне темновых токов AlN-детектора). Как и ожидалось, для эталонного образца ход $N^2(I)$ был линеен с наклоном 1.10 keV²/nA. Исследуемый детектор показал зависимость, близкую к квадратичной, что указывает на наличие фликер-шума [9].

Рис. 2. Зависимость разрешения по энергии (1) и уровня шума (2,3) от величины обратного смещения. Время формирования сигнала, μ s: 2 — 1.0; 3 - 10.0.

4. Отмеченные выше особенности в зависимости ССЕ (U_{rev}) и в поведении шумов в функции θ и U_{rev} свидетельствуют о существенной роли поверхностных состояний на границе раздела диэлектрика и *p*-Si. Весьма интересным оказалось "медленное", на протяжении года хранения снижение обратных токов структур (см. фрагмент рис. 3), что затруднительно связать с изменениями в объеме. Граница раздела исследовалась методом емкостной спектроскопии глубоких уровней (DLTS). В задачу входило выявить наличие глубоких центров (ГЦ) и проследить динамику перестройки поверхностных состояний.

В измерениях образец находился под обратным напряжением -5.0 V. Далее использовались два режима напряжения заполнения ГЦ (U_{ful}). В первом при исследовании объема $U_{ful} = -0.2$ V оставалось обратным. Во втором режиме напряжение повышалось до $U_{ful} = +2.5$ V в прямом направлении. Это позволяло также изменять заполнение

Рис. 3. Спектры сигнала DLTS при изменении заполнения центров в объеме (1) и в объеме и на поверности (2) *p*-Si. Параметры уровней приведены в таблице. Фрагмент — улучшение во времени обратной ветви вольт-амперной характеристики МДП-структуры с пленкой диэлектрика AlN. 1 — исходная, 2 — после хранения в течение года.

центров на границе AlN-(pSi), т. е. зондировать одновременно с объемом и поверхность p-Si. В результате были обнаружены 6 ГЦ (см. таблицу). Центры H1 и H2 наблюдались в DLTS спектрах (рис. 3) при обоих режимах, что означает их присутствие в объеме p-Si. При помощи второго режима удалось обнаружить еще 4 ГЦ (H3–H6), причем H5 и H6 имели в пересчете на единицу объема концентрации $1.7 \cdot 10^{11}$ и $1.5 \cdot 10^{11}$ сm⁻³. Это указывает, что граница раздела AlN-(pSi) далека от идеальности. Измерения после хранения образцов в течение года подтвердили наличие динамики состояния поверхности. Так, концентрация центра H5 упала примерно в два раза и составила $9.0 \cdot 10^{10}$ сm³. Последнее коррелирует с указанным выше уменьшением обратных токов.

47

Глубокий центр	Энергетический уровень, eV	Сечение захвата дырки, cm ²	Концентрация, cm ⁻³
H1 H2 H3 H4 H5	$E_V + 0.20 \ E_V + 0.37 \ E_V + 0.32 \ E_V + 0.47 \ E_V + 0.51$	$9.0 \cdot 10^{-16} 3.0 \cdot 10^{-15} 5.0 \cdot 10^{-18} 4.0 \cdot 10^{-16} 2.0 \cdot 10^{-16}$	$\begin{array}{c} 1.0\cdot 10^{11} \\ 9.0\cdot 10^{10} \\ 3.7\cdot 10^{10} \\ 5.0\cdot 10^{10} \\ 1.7\cdot 10^{11} \end{array}$
H6	$E_V + 0.64$	$2.0\cdot 10^{-15}$	$1.5\cdot10^{11}$

Глубокие центры, наблюдающиеся в объеме и на поверхности p-Si

В заключение отметим, что структуры на высокоомном *p*-Si с диэлектриком AlN показали в качестве детекторов ядерного излучения характеристики, близкие к детекторам с барьером Шоттки. В противоположность барьерам на *p*-Si без слоя диэлектрика структуры не только не ухудшают во времени своих свойств, но и заметным образом улучшают обратную ветвь вольт-амперной характеристики. Вместе с тем следует уменьшить плотность состояний на границе раздела AlN-(*p*Si) для снижения имеющегося в настоящее время уровня потерь заряда ($\approx 1.0\%$) и фона низкочастотного шума. Имеются все основания ожидать, что в результате исследуемые структуры будут конкурентны выпускаемым промышленно детекторам на базе барьера Шоттки Au-(*n*Si).

Авторы выражают благодарность А.И. Терентьевой, А.П. Михайлову за помощь в изготовлении образцов и И.И. Шишкину за помощь в измерениях.

Работа выполнена при поддержке гранта президента РФ — Ведущие научные школы HIII-2951.2008.2.

Список литературы

- [1] Гильман Б.И., Третьяков А.П. // ФТП. 1981. Т. 15. С. 1320.
- [2] Depas M., Van Meirhaegghe R.L., Laflere W.H., Cardon F. // Semicond. Sci. Technol. 1992. T. 7. C. 1476.
- [3] Paul Benny E.T., Majhi J. // Semicond. Sci. Technol. 1992. T. 7. C. 154.

- [4] Котина И.М., Тухконен Л.М., Спицын Б.В., Блаут-Блачев А.Н., Ефременко А.М., Корляков А.В., Лучинин В.В., Иванов А.М., Строкан Н.Б. // 6-я Международная конференция "Аморфные и микрокристаллические полупроводники". Санкт-Петербург, 7–9 июля, 2008. С. 262–263.
- [5] Chattopadhyay P., Das K. // J. of Appl. Phys. 1996. T. 80. C. 4229.
- [6] Вербицкая Е.М., Еремин В.К., Маляренко А.М., Строкан Н.Б., Суханов В.Л., Шмидт Б., Борани И. // ФТП. 1993. Т. 27. В. 11–12. С. 2068.
- [7] Иванов А.М., Калинина Е.В., Константинов А.О., Онушкин Г.А., Строкан Н.Б., Холуянов Г.Ф., Hallen A. // Письма в ЖТФ. 2004. Т. 30. В. 14. С. 1.
- [8] Иванов А.М., Строкан Н.Б. // ЖТФ. 2000. Т. 70. В. 2. С. 139.
- [9] Бойко М.Е., Еремин В.К., Иванов А.М., Строкан Н.Б., Голубков С.А. // ПТЭ. 2000. Т. 3. С. 111.