07;09 Квазиоптический фазовращатель 8-mm диапазона на основе активной дифракционной решетки

© А.Л. Вихарев, А.А. Вихарев, А.М. Горбачев, О.А. Иванов, В.А. Исаев, С.В. Кузиков

Институт прикладной физики РАН, Нижний Новгород E-mail: ioleg@appl.sci.-nnov.ru

В окончательной редакции 9 декабря 2008 г.

Разработан квазиоптический фазовращатель, позволяющий изменять фазу электромагнитного излучения в волновом пучке. Действие фазовращателя основано на эффекте изменения фазы волны, отраженной от активной дифракционной решетки, создаваемой слоями плазмы в каналах расположенной над плоским металлическим зеркалом диэлектрической пластины. Показано, что, изменяя расстояние между дифракционной решеткой и зеркалом и давление газа в каналах решетки, можно эффективно управлять фазой отраженной волны. Проведено сравнение данных эксперимента с результатами численных расчетов.

PACS: 84.90.+a

В миллиметровом диапазоне длин волн (*K*-band) обычно используются квазиоптические волноводные тракты и резонаторы, в которых распространение электромагнитных волн осуществляется в виде волновых пучков. При этом для активного управления параметрами пучка наиболее перспективным представляется применение распределенных электродинамических системы [1]. Так, для изменения фазы в этом случае можно использовать эффект сдвига фазы волны, отраженной от размещенной перед металлическим зеркалом активной плазменной решетки.

В данной статье представлены результаты исследования квазиоптического фазовращателя 8-тт диапазона длин волн на основе активной, создаваемой плазменными слоями, дифракционной решетки. Подобный фазовращатель может быть использован, в частности, для вывода энергии в устройствах активной и пассивной компрессии СВЧ-импульсов [1–3].

67

Рис. 1. Чертеж фазовращателя на основе активной дифракционной решетки: *I* — металлическое зеркало, *2* — кварцевая решетка, *3* — газоразрядный канал, *4* — винт, *5* — пружина, *6* — электроды, *7* — откачной патрубок.

Фазовращатель представлял собой набор полых прямоугольных газоразрядных каналов в кварцевой пластине, установленной над плоским металлическим зеркалом. Работа фазовращателя моделировалась численно с помощью метода FDTD (Finite-Difference Time-Domain) [4]. Конструкция фазовращателя представлена на рис. 1. Рассматривалось наклонное падение плоской ТЕ-волны на периодическую структуру. В такой постановке данная задача безгранична вдоль плоскости решетки, поэтому для ее решения в ограниченной области интегрирования моделирование проводилось для одного периода решетки с применением циклических граничных условий синусно-косинусным методом [4]. Период решетки выбирался исходя из условия отсутствия других максимумов отражения, кроме зеркального. Вектор электрического поля был параллелен каналам решетки. Такой выбор поляризации

обеспечивал высокую электропрочность фазовращателя и эффективное воздействие плазменной решетки на фазу отраженной волны. На основании результатов расчета определялись размеры решетки и необходимые для изменения фазы параметры плазмы. Влияние плазмы учитывалось введением в уравнение Максвелла токов проводимости:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{d\mathbf{H}}{dt}; \quad \nabla \times \mathbf{H} = \frac{\varepsilon}{c} \frac{d\mathbf{E}}{dt} + \frac{4\pi}{c} \mathbf{j}; \quad \frac{d\mathbf{j}}{dt} = \frac{e^2}{m} N_e \mathbf{E} - v(N) \mathbf{j}, \quad (1)$$

где N_e — концентрация электронов, **ј** — плотность тока в плазме, $\nu(N) = 1.7 \cdot 10^{-7} N = \text{const}, s^{-1}$ — частота электрон-молекулярных столкновений [5], N — плотность молекул азота, ст⁻³, c — скорость света, е и m — заряд и масса электрона, є — диэлектрическая проницаемость кварцевой пластины. В расчетах использовалась стандартная для метода FDTD сетка. Пространственный шаг сетки выбирался в диапазоне $(0.01 - 0.03)\lambda$, где λ — длина волны падающего излучения, что обеспечивало необходимую точность и высокое быстродействие расчета. При моделировании процесса переключения фазовращателя предполагалось, что в газоразрядных каналах с заданной плотностью газа "мгновенно" создается плазма с определенной концентрацией электронов. Плотность газа и концентрация электронов в каналах решетки варьировались в процессе расчета. Расчеты показали, что для эффективного изменения фазы концентрация электронов должна превышать величину $N_e > 10^{13} \,\mathrm{cm}^{-3}$, а для уменьшения поглощения СВЧ-излучения в образующейся плазме необходимо использовать низкие давления газа p < 10 Torr. Кроме того, величина сдвига фазы существенным образом зависит от расстояния между решеткой и металлическим зеркалом.

Расчетная зависимость сдвига фазы отраженной волны от величины зазора между решеткой и зеркалом при создании в каналах решетки плазмы с различной плотностью приведена на рис. 2. Из рисунка видно, что при достаточно большой концентрации электронов регулировкой расстояния между кварцевой решеткой и металлическим зеркалом можно обеспечить необходимый фазовый сдвиг. При этом характерное время изменения фазы, определяется скоростью ионизации газа в газоразрядных каналах и обычно не превышает 10 ns. Таким образом, проведенные расчеты показали возможность использования активной решетки в качестве управляемого фазовращателя.

Рис. 2. Изменение фазы отраженной волны от расстояния между решеткой и металлическим зеркалом. Кривые *1, 2, 3* — расчет при разной плотности плазмы в каналах решетки: $I = 10^{13}$, $2 = 2.5 \cdot 10^{13}$, $3 = 5 \cdot 10^{13}$ сm⁻³, \circ — эксперимент.

На основании проведенных расчетов была изготовлена кварцевая решетка с газоразрядными каналами (рис. 1, a). В экспериментах изучалось изменение фазы отраженной от решетки волны при создании плазмы в каналах. Решетка представляла собой набор полых прямоугольных каналов, сделанных в кварцевой пластине с размерами 240 × 120 mm. Поперечное сечение каждого канала — 3.6 × 2.3 mm (больший размер в плоскости решетки), период решетки 6.79 mm. Конструктивно блок решетки выполнен из двух пластин, толщиной 8.15 и 6.2 mm, соединенных между собой. Общее число каналов равно 29. Все каналы, с одной стороны, соединялись с откачной системой, находящейся под потенциалом земли. С другой стороны, каждый канал имел электрод из нержавеющей стали, на который через ограничительное сопротивление $R = 1 \text{ k}\Omega$ подавался высоковольтный импульс отрицательной полярности с амплитудой 50–100 kV и длительностью 100 ns (длительность переднего фронта менее 10 ns). Каналы заполнялись

азотом при давлении p = 0.5 - 10 Torr. При подаче высоковольтного импульса в каналах происходил пробой газа и возникал газовый разряд. Кварцевая решетка располагалась над металлическим зеркалом с небольшим зазором, величина которого регулировалась с помощью специального юстировочного устройства.

Значение плотности создаваемой плазмы оценивалось по величине тока, протекающего через каналы дифракционной решетки. Суммарный ток, протекающий по всем разрядным каналам, измерялся с помощью безындукционного шунта. Максимальная величина тока составляла величину $\sim 600-700$ А, т.е. через каждый канал (использовалось 18 каналов) протекал ток $J_{\rm max} \sim 40$ А. По этому току можно оценить величину плотности плазмы в канале:

$$N_{e \max} = \frac{J_{l \max}}{eSV_d},\tag{2}$$

где $S = 7.8 \text{ mm}^2$ — поперечное сечение плазменного канала, $V_d =$ $= 3.38 \cdot 10^6 (E/p)^{0.5}$ — дрейфовая скорость электрона в азоте для значений электрического поля и давлений, лежащих в диапазоне $120 < E/p < 3000 V/(cm \cdot Torr)$ [6], E = U/L, L - длина плазменногоканала. Оценки показали, что в достаточно широкой области давлений азота *p* = 0.5–10 Тогг концентрация электронов близка или превышает критическую N_c (для частоты электромагнитного излучения 34 GHz критическая плотность $N_c = 1.46 \cdot 10^{13} \,\mathrm{cm}^{-3}$). При этом плотность плазмы монотонно возрастала с ростом давления и составляла величину $1.8 \cdot 10^{13} \,\mathrm{cm}^{-3}$ при давлении $p = 0.5 \,\mathrm{Torr}$ и $2.8 \cdot 10^{13} \,\mathrm{cm}^{-3}$ при *p* = 7 Torr. В действительности максимальная концентрация электронов несколько выше расчетной из-за неоднородного распределения плотности плазмы по сечению разрядного канала. В частности, при более высоких давлениях разряд переходил в стримерный с узким поперечным сечением, однако в этом случае стабильность разряда существенно ухудшалась.

На следующем этапе исследовалась работа плазменной дифракционной решетки в качестве переключателя фазы падающей на нее волны. Схема эксперимента приведена на рис. 3, а. В эксперименте регистрировались амплитуда и фаза отраженного от решетки излучения. Электромагнитное излучение направлялось на решетку с помощью входного рупора (15) с апертурой 5 сm, угол падения составлял 12°.

Рис. 3. a — схема измерений фазы отраженной от дифракционной решетки волны: 1 — СВЧ-генератор, 2 — ферритовый вентиль, 3 — направленный ответвитель, 4 — фазовращатель, 5 — аттенюатор, 6 — двойной тройник, 7 — согласованная нагрузка, 8 — детекторы, 9 — металлическое зеркало, 10 — дифракционная решетка, 11 — генератор высоковольтных импульсов, 12 — вакуумметр, 13 — напуск газа, 14 — форвакуумный насос, 15 — входной рупор, 16 — приемный рупор; b — изменение фазы отраженной от решетки волны после подачи высоковольтного импульса (d = 1.9 mm, p = 5 Torr).

Отраженный от решетки зеркальный пучок принимался рупором (16), идентичным входному. Ширина пучка электромагнитных волн по уровню спадания поля в 2 раза составляла на дифракционной решетке величину ~ 6 cm, а на приемном рупоре ~ 8 cm. Таким образом, приемный рупор перехватывал ~ 60% мощности пучка. Изменение фазы отраженной от дифракционной решетки волны определялось интерферометрическим методом (рис. 2). Отраженная от решетки электромагнитная волна по измерительному волноводному тракту поступала на смесительный детектор (8) для сравнения с фазой опорного излучения, приходящего от СВЧ-генератора. Ответвление части мощности генератора в опорный тракт осуществлялось направленным ответвителем (3). Балансировка мощности в измерительном и опорном трактах осуществлялась с помощью аттенюаторов (5), а суммирование излучения происходило в Е-плече двойного тройника (6). Начальная разность фаз между излучением опорного и измерительного плеча интерферометра изменялась с помощью фазовращателя (4) и устанавливалась равной 0 или 180°. В первом случае выходной сигнал интерферометра максимален, а во втором — равен 0. Величина отраженной от фазовращателя мощности P(t) контролировалась с помощью детектора (8), через направленный ответвитель (3) с переходным ослаблением 13 dB.

Сигнал на выходе интерферометра зависит как от величины мощности исследуемой и опорной электромагнитных волн P(t) и P_0 , так и от разности фаз этих волн $\varphi(t)$:

$$U(t) \sim P_0 + P(t) + 2\sqrt{P_0 P(t)} \cos(\varphi(t) + \varphi_0),$$
(3)

здесь начальная фаза φ_0 , устанавливаемая фазовращателем (4). При подаче на электроды фазовращателя высоковольтного импульса в каналах решетки зажигается плазма с плотностью порядка критической ($\sim 10^{13}$ cm⁻³), что приводит к изменению фазы отраженной волны и соответственно амплитуды сигнала в выходном канале интерферометра. Эксперименты показали, что величина сдвига фазы отраженной волны существенным образом зависит от давления азота в каналах решетки. В случае, когда решетка была вплотную прижата к металлическому зеркалу, максимальное изменение фазы $\Delta \varphi = 90^{\circ}$ достигалось при давлениях p = 3-5 Torr. Уменьшение давления приводило к снижению величины фазового сдвига из-за уменьшения концентрации электронов. При увеличении давления (выше 10 Torr) начинает проявляться неста-

бильность создания плазмы, приводящая к зажиганию разряда только в части каналов в решетки и снижению эффективности переключения фазы.

Величину сдвига фазы при переключении можно также изменять, отодвигая решетку от металлического зеркала. В эксперименте при зазоре между решеткой и металлическим зеркалом, равном $d = 1.9 \, \text{mm}$, амплитуда сигнала в выходном канале интерферометра изменялась от максимального уровня до нуля, что свидетельствовало об изменении фазы на величину $\Delta \varphi = \pi$. Сдвиг фазы $\varphi(t)$, рассчитанный для этого случая на основании формулы (3) с учетом изменения амплитуды отраженного сигнала, приведен на рис. 3, b. Полученная в эксперименте зависимость фазового сдвига от расстояния между кварцевой решеткой и металлическим зеркалом представлена на рис. 2. Из рисунка следует, что экспериментальная зависимость удовлетворительным образом согласуется с результатами расчетов и оценок концентрации электронов в каналах плазменной решетки. Стабильность работы фазовращателя зависела от воспроизводимости плотности плазмы в каждой реализации. Так, при давлении азота $p \le 5$ Тогг и напряжении на электродах 100 kV разброс сдвига фаз не превышал величины 10%. Повысить стабильность можно путем создания плазмы с концентрацией, существенно превышающей критическую. В мощных пучках электромагнитных волн этому будет способстоввать дополнительная ионизация газа, производимая непосредственно полем самого пучка.

Таким образом, в результате проведенных исследований предложена новая конструкция квазиоптического фазовращателя, позволяющего изменять фазу электромагнитного излучения в волновом пучке. Изменение фазы происходит в результате создания плазменной дифракционной решетки над плоским металлическим зеркалом. При этом величина фазового сдвига зависит от расстояния между решеткой и зеркалом, давления газа в каналах решетки и может быть сделана равной 180°. Согласно предварительным оценкам, фазовращатель подобного типа может применяться для управления фазой в волновых пучках с длиной волны 0.8–2 ст с мощностью до 100 MW и длительностью импульса 50–100 пs. Разработанный фазовращатель может быть также использован для изменения (переворота) фазы в пассивных компрессорах СВЧимпульсов на основе квазиоптических резонаторов миллиметрового диапазона длин волн.

Список литературы

- Вихарев А.Л., Ковалев Н.Ф., Петелин М.И. // Письма в ЖТФ. 1996. Т. 22.
 В. 19. С. 41.
- [2] Petelin M.I., Hirshfield J.L., Kuzikov S.V., Vikharev A.L. // Proceeding of SPIE. 2000. V. 4031. P. 224–231.
- [3] Вихарев А.А., Горбачев А.М., Кузиков С.В. Дифракционная решетка активный коммутатор для квазиоптического компрессора СВЧ-импульсов / Препринт № 739. ИПФ РАН, Нижний Новгород, 2007.
- [4] *Taflove A*. Advances in computational electrodynamics. The Finite-Difference Time-Domain Method. Boston, London, Arthech House, 1998. 724 p.
- [5] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 591 с.
- [6] Ali A.W. // Laser and Particle beams. 1988. V. 6. P. 105.