03;04

Электроразрядный эффект в плазменном течении следа: перераспределение энергии пульсаций в область низких частот

© Г.В. Гембаржевский

Институт проблем механики РАН, Москва E-mail: gvgemb@ipmnet.ru

Поступило в Редакцию 9 июля 2008 г.

Исследовано газоплазменное течение в ближнем следе за двумя цилиндрами, расположенными бок о бок поперек потока, в области чисел Рейнольдса течения Re ~ 1000. В спектре пульсаций скорости обнаружен эффект перераспределения мощности квазикогерентных пульсаций из высокочастотного пика в низкочастотный под действием тлеющего разряда. Приведено возможное объяснение эффекта, построенное на моделировании течения связанными осцилляторами Ван-дер-Поля и на учете зависимости пространственного распределения тока от его величины.

PACS: 47.32.ck, 52.80.Hc

Современный технический прогресс обусловливает повышенное внимание к проблемам гидродинамики низкотемпературной плазмы. Для широкоапертурных плазмодинамических течений известные проблемы описания турбулентного потока осложнены необходимостью учета дополнительного набора, вообще говоря, неравновесных разрядных параметров. Ввиду сложности учета взаимного влияния электрического разряда и несущего потока имеет смысл экспериментальное исследование модельных задач с целью выявления основных эффектов разряда и типичных каналов его воздействия на турбулентный поток. В соответствующих модельных задачах при максимально упрощенной структуре течения принципиально необходимо лишь сохранить вихревой характер потока. На наш взгляд, таким удобным для экспериментального исследования модельным течением может служить, прежде всего, поток в следе за уединенным цилиндрическим пло-

95

 $N_2 + He$

Рис. 1. Схема эксперимента в разрядной камере установки.

хообтекаемым телом. Следующим в иерархии по гидродинамической сложности является течение в ближнем следе за группой цилиндров. Первое плазменное течение (дорожка Кармана) было экпериментально исследовано ранее, и были обнаружены эффекты влияния разряда на интенсивность и интегральный масштаб квазикогерентных пульсаций скорости течения [1–3]. Ниже приводятся результаты экспериментов по исследованию воздействия разряда на пульсации скорости течения плазмы в ближнем следе за группой тел, состоящей из двух цилиндров.

Эксперимент проведен на установке электроразрядного быстропроточного CO_2 -лазера Лантан-2. Разрядная камера имела сечение 55 × 900 mm и длину вдоль потока 260 mm — на этом расстоянии находились катод и анод основного разряда (рис. 1). Катод располагался вверх по потоку; соответствующее электрическое поле обозначено символом $E_{=}$. В установке горел непрерывный тлеющий несамостоятельный разряд, причем ионизация газа осуществлялась высоковольтными импульсами высокой скважности, прикладываемыми к электрической емкости, образуемой верхней и нижней стенками разрядной камеры. Ионизующее импульсное электрическое поле обозначено на рис. 1

как E_{\uparrow} . Благодаря достаточно высокой частоте повторения импульсов (3-5 kHz) режим основного разряда между трубчатыми электродами был близок к стационарному при давлениях смеси десятки Torr.

Течение следа было организовано с помощью двух прямых кругов цилиндров диаметром $D = 15 \, \text{mm}$, изготовленных из кварца. Эти цилиндры располагались непосредственно за катодом вниз по потоку (соприкасались с ним). Расстояние между цилиндрами — зазор $L = 18 \,\mathrm{mm}$. Число Рейнольдса потока, рассчитанное по диаметру цилиндра и невозмущенной скорости, составило величину $\text{Re} \sim 10^3$. Пульсационная скорость в следе измерялась с помощью датчика [4], расположенного за одним из цилиндров на расстоянии 130 mm ниже катода по течению. Сигнал пульсационной скорости обрабатывался с помощью комплекса PALSE 3560 С (Bruel & Kjar). Для течения бинарной смеси 16 Torr N₂ + 2 Torr Не была проведена серия экспериментов при различных токах основного разряда $I \in [0; 2 \text{ A}]$. Полученные спектры пульсаций скорости F(f), m · s^{-1/2} приведены на рис. 2. В спектрограмме пульсационной скорости потока нейтрального газа за двумя цилиндрами наблюдается единственный спектральный пик с центром на частоте ~ 1.11 kHz. В соответствующем спектре потока плазмы присутствуют два спектральных пика: первый расположен на той же частоте ~ 1.11 kHz, что и для потока газа, а второй на частоте ~ 0.8 kHz. Приведенные данные демонстрируют эффект перераспределения мощности квазикогерентных мод колебаний под действием тлеющего разряда. Разряд вызывает нарастание интегральной интенсивности низкочастотных колебаний при одновременном снижении интенсивности высокочастотных осцилляций. Необходимо отметить, что в количественном отношени обнаруженный эффект разряда носит ярко выраженный характер. В условиях эксперимента низкочастотный пик не наблюдаем для случая нейтрального потока (на фоне однородного спектрального пьедестала); в то же время при токе разряда $I = 2 \,\mathrm{A}$ три четверти энергии квазикогерентных колебаний сосредоточены в НЧ-пике.

Для широкого диапазона чисел Рейнольдса моделью течения в следе за цилиндром служит дорожка Кармана. Поэтому для объяснения рассматриваемого электроразрядного эффекта в следе за двумя цилиндрами (в ближнем поле течения $x/D \leq 10$, где x — расстояние по потоку от оси цилиндра) можно попытаться использовать модель взаимодействующих при своем формировании вихревых дорожек. В свою

Рис. 2. Спектр пульсаций скорости потока F(f): a — нейтральный поток за двумя цилиндрами; b — поток плазмы с током I = 2A за двумя цилиндрами; c — поток плазмы с током I = 2A за одним цилиндром.

очередь каждую из формирующихся дорожек представим в низшем приближении слаболинейным $\varepsilon \ll 1$ автогенератором Ван-дер-Поля. Величина є характеризует относительную скорость нарастания малой амплитуды колебаний (уединенного осциллятора) и соответственно может быть выражена через логарифмический инкремент у нарастания бесконечно малой амплитуды колебаний $\gamma = 2\pi \varepsilon / \sqrt{1 - \varepsilon^2}$:

Символами x1 и x2 обозначены координаты моделирующих осцилляторов. Ниже при обработке экспериментальных данных в качестве частотного спектра координаты x1 использован спектр поперечной составляющей скорости течения на оси первого цилиндра. Близкое расположение цилиндров в группе вызывает взаимодействие дорожек и соответственно моделирующих осцилляторов. Это взаимодействие охарактеризуем (в низшем приближении) двумя коэффициентами линейной безынерционной связи h, g. Уравнения (1) обезразмерены так, что частота колебаний уединенного осциллятора при малой амплитуде есть $\omega_{\infty} = \sqrt{1 - \varepsilon^2}$. В случае слабой нелинейности и слабой связи осцилляторов $\varepsilon < 1, h, g < 1$ для решения (1) следует воспользоваться методом медленно меняющихся амплитуд и и v [5]:

$$x_i = u_i \cos \tau + v_i \sin \tau, \qquad \overset{*}{x_i} = -u_i \sin \tau + v_i \cos \tau. \tag{2}$$

Тогда имеем три установившиеся одночастотные моды колебаний: синфазная мода, противофазная мода и асимметричаня (разность фаз — $\pi/2$). Частоты этих мод следующие:

$$\omega_0 = (1+2g)\omega_\infty, \quad \omega_\pi = (1+2h)\omega_\infty, \quad \omega_{\pi/2} = (1+h+g)\omega_\infty \quad (3)$$

(с точностью до учета линейных членов по малым параметрам ε, g, h). Синфазная и противофазная моды колебаний связанных осцилляторов устойчивы относительно малых возмущений δu_i и δv_i . Асимметричная мода, наоборот, всюду линейно неустойчива. В соответствии с моделью течения две первые моды осцилляций порождают две моды устойчивых течений за цилиндрами (рис. 3). Полученные экспериментальные данные (рис. 2) позволяют оценить коэффициенты связи осцилляторов по

7* Письма в ЖТФ, 2009, том 35, вып. 5

(

Рис. 3. Синфазная — 0 и противофазная — П моды течения за двумя цилиндрами.

расположению спектральных пиков $f_{\,\infty}=0.9\,{\rm kHz}$ согласно (3):

$$g = 0.5 \lfloor (\omega_0/\omega_\infty) - 1 \rfloor = -0.06, \quad h = 0.5 \lfloor (\omega_\pi/\omega_\infty) - 1 \rfloor = 0.12.$$
 (4)

Оказывается, экспериментальная оценка (4) дает достаточно малые значения коэффициентов связи, что свидетельствует в пользу применения метода медленных амплитуд.

Если использовать более сложную модель течения [6], учитывающую кубическую нелинейность осцилляторов и инерционность их связи, то полученные данные позволяют оценить лишь комплекс

$$\frac{\eta(c_1 - c_2)}{1 + \varepsilon c_2} \approx \eta(c_1 - c_2) = \frac{\omega_{\pi} - \omega_0}{2\omega_0} = 0.19$$

(в обозначениях [6]).

При конечном значении коэффициентов связи *h*, *g* имеем два устойчивых относительно малых возмущений режима течения: с синфазной и противофазной синхронизацией двух вихревых дорожек Кармана за

цилиндрами. Реализация той или иной моды зависит от случайных причин, соответственно имет место явление перемежаемости режимов течения, обусловленное турбулентными пульсациями в набегающем потоке (аналогично явлению перемежаемости, наблюдаемому при ламинарно-турбулентном переходе для течения в трубах, пограничных слоях [7]). Перемежаемость характеризуется коэффициентом $\gamma \in [0, 1]$, определяемым как средняя относительная доя времени, в течение которого существует один из режимов течения (пусть для определенности в данном случае это будет синфазный режим). Тогда из приведенных экспериментальных данных по спектрам пульсаций (осредненным за большой промежуток времени ~ минуты) следует заключить, что рост тока разряда вызывает рост коэффициента перемежаемости у течения следа за двумя цилиндрами.

Обнаруженный эффект перераспределения энергии колебаний находит следующее объяснение. В первом приближении в камере реализуется квазиоднородное распределение проводимости плазмы. Соответственно в отсутствии цилиндров-турбулизаторов за катодом имеется однородное распределение погонной плотности тока с катода. Однако наличие пары цилиндров вносит неоднородность в распределение проводимости плазмы тем большую, чем больше ток основного разряда I (ввиду прогрева газа и накопления активных частиц в застойных зонах за телами). С ростом тока І априори возможное симметричное токораспределение с участка катода, расположенного между цилиндрами (50/50% между застойными зонами за цилиндрами), спонтанно нарушается в пользу асимметричного распределения, причем с тем большей вероятностью (и в тем большей степени), чем выше ток. В силу свойств геометрической симметрии задачи с неустойчивым симметричным распределением тока коррелирует гидродинамический режим противофазно синхронизованных дорожек Кармана. И наоборот, асимметричному устойчивому распределению тока соответствует режим течения синфазных дорожек Кармана. Соответственно имеем рост коэффициента перемежаемости у с ростом тока основного разряда І и превалирование НЧ-пика в спектре пульсаций.

Наблюдаемый эффект требует дальнейшего изучения. Его можно сопоставить с явлением обратного каскада, наблюдаемым в двумерной турбулентности. Предложенная для объяснения эффекта модель связанных осцилляторов Ван-дер-Поля, с учетом нарушения симметрии токораспределения между застойными зонами за цилиндрами, согласуется с

имеющимися экспериментальными данными: удается объяснить появление второго, низкочастотного, пика в спектре пульсаций скорости, а также перераспределение энергии пульсаций между пиками с увеличением разрядного тока. Модель согласуется с экспериментальными данными и в плане малости оцененных коэффициентов связи осцилляторов $|h|, |g| \ll 1$. Подобные эффекты перестройки течения привлекают значительный интерес. Так, в [8] анализируется эффект подавления разрядом турбулентных высокочастотных пульсаций течения в пограничном слое на пластине.

Автор выражает признательность Э.В. Теодоровичу за полезные обсуждения и рекомендации.

Работа выполнена в развитие исследований, поддержанных РФФИ, проект 05-01-00901, и в первоначальном варианте была доложена на Международной конференции по неравновесным процессам в соплах и струях, Алушта-2008.

Список литературы

- [1] Гембаржевский Г.В., Генералов Н.А. // ТВТ. 2004. Т. 42. С. 501-505.
- [2] Гембаржевский Г.В., Генералов Н.А. // Математическое моделирование. 2001. Т. 13. № 7. С. 11–16.
- [3] Гембаржевский Г.В., Генералов Н.А., Соловьев Н.Г. // Изв. РАН. МЖГ. 2000. № 2. С. 81–91.
- [4] Гембаржевский Г.В., Генералов Н.А., Косынкин В.Д. // Измерительная техника. 1994. № 10. С. 63–67.
- [5] Мигулин В.В., Медведев В.И., Мустелье Е.Р., Парыгин В.Н. Основы теории колебаний. М.: Наука, 1988.
- [6] Peschard I., Le Gal P. // Physical Review Letters. 1996. V. 77. N 15. P. 3122-3125.
- [7] Шлихтинг Г. Теория пограничного слоя / Пер. с нем. М.: Наука, 1969.
- [8] Минаев И.М., Рухадзе А.А. // ЖТФ. 2005. Т. 75. В. 2. С. 126–128.