05.1;05.3 Влияние ориентации на высокотемпературную сверхэластичность в монокристаллах Со₄₉Ni₂₁Ga₃₀

© И.В. Киреева, З.В. Победенная, Ю.И. Чумляков, J. Pons, E. Cesari, I. Karaman

ОСП "Сибирский физико-технический институт Томского госуниверситета" Томск, Россия E-mail: i.v.kireeva@mail.ru Universitat de les Illes Balears, Departament de Fisica, E-07122 Palma de Mallorca, Spain Departament of Mechanical Engineering,Texas A&M University, College Station, TX 77843, USA

Поступило в Редакцию 25 июля 2008 г.

Представлены результаты исследования температурного интервала сверхэластичности (СЭ) ΔT_{SE} в монокристаллах [001], [$\bar{1}23$], [$\bar{1}24$] сплава Со₄₉Ni₂₁Ga₃₀ (at.%) при деформации сжатием. Показано, что ΔT_{SE} в монокристаллах [001] равен 441 К и обратимые B2–L1₀ мартенситные превращения (МП) наблюдаются при $T_2 = 698$ К. В монокристаллах [$\bar{1}23$] и [$\bar{1}24$] ΔT_{SE} уменьшается до 233 К, а СЭ имеет место при $T_2 = 523$ К.

PACS: 81.05.-t, 81.30.Kf, 81.40.Cd

Сплавы Co–Ni–Ga представляют собой новые перспективные материалы, в которых наблюдается эффект памяти формы (ЭПФ) и СЭ. Они обладают высокой прочностью, достаточной пластичностью, высокой температурой плавления, хорошим сопротивлением коррозии и представляют собой интерес для практического использования [1–6]. Для полной реализации возможностей сплавов Co–Ni–Ga необходимо использование монокристаллов для исследования развития B2–L1₀ МП под нагрузкой, изучения зависимости ЭПФ и СЭ от ориентации кристаллов и температуры испытания [1–4]. В данной работе на монокристаллах сплава Co₄₉Ni₂₁Ga₃₀ (at.%), ориентированных для сжатия вдоль [001], [123], [124] направления, ставилась задача исследовать

72

влияние ориентации на зависимость от температуры предела текучести $\sigma_{cr}(T)$, величины СЭ, температурного интервала проявления СЭ ΔT_{SE} , температуры конца СЭ T_2 , величины механического гистерезиса $\Delta \sigma$, обусловленных B2–L1₀ МП под нагрузкой.

Монокристаллы сплава Со₄₉Ni₂₁Ga₃₀ выращивали методом Бриджмена в атмосфере инертного газа. Ориентацию определяли на дифрактометре "Дрон-3М" с ипользованием Fe-K_a-излучения. Образцы для сжатия имели размеры 3 × 3 × 6 mm. Перед испытанием образцы шлифовали и электролитически полировали в электролите 210 ml H₃PO₄ + 25 ml CrO₃ при T = 300 K, U = 20 V. Температуры МП определяли из анализа кривых зависимости электрического сопротивления от температуры $\rho(T)$. Температуры начала и конца прямого соответственно $M_s = 240 \,\mathrm{K}$ и $M_f = 235 \,\mathrm{K}$ и обратного $A_s = 255 \,\mathrm{K}$ и $A_f = 257 \, \text{K} \,$ МП соответствуют перегибам на кривой $\rho(T)$. Для исследования структуры мартенсита и процессов старения использовали просвечивающий электронный микроскоп Hitachi H-600 с ускоряющим напряжением 100 kV, который позволял проводить in situ охлаждение и нагрев, эксперименты в колонне микроскопа. На каждую температуру Т брался отдельный образец, который деформировался для наблюдения полной СЭ, приготовления фольг и проведения in situ экспериментов.

На рис. 1, *a*, *b* приведены зависимости предела текучести σ_{cr} , ΔT_{SE} , $\Delta \sigma$, величины СЭ ε_{SE} и необратимой деформации ε_{irrev} от температуры испытания *T* для монокристаллов [001], [123] сплава Co₄₉Ni₂₁Ga₃₀ при деформации сжатием. В монокристаллах [124] закономерности изменения σ_{cr} , ΔT_{SE} , $\Delta \sigma$, ε_{SE} и ε_{irrev} с ростом температуры испытания оказались аналогичными монокристаллам [123].

Минимальные значения $\sigma_{cr}(T) = 20-30$ МРа достигаются при $T = M_s = 240$ К (рис. 1, кривая I), которые совпадают с найденными значениями M_s по температурной зависимости $\rho(T)$. Максимальные значения $\sigma_{cr}(T)$ имеют место при $T = M_d$. При $T = M_d$ напряжения σ_{cr} , необходимые для развития МП, оказываются равными напряжению макроскопичекого пластического течения высокотемпературной фазы σ_{cr} . Видно (рис. 1, a, b, кривые I), что $\sigma_{cr}(M_s)$ и $M_d = 800$ К не зависят от ориентации. От ориентации оказываются зависящими значения $\sigma_{cr}(M_d)$: максимальные значения $\sigma_{cr}(M_d) = 1200$ МРа достигаются в монокристаллах [001]. В монокристаллах [123] значения напряжений в точке M_d равны 900 МРа (рис. 1, a, b, кривая I).

Рис. 1. Температурная зависимость осевых напряжений σ_{cr} , величины сверхэластичности ε_{SE} , необратимой пластической деформации ε_{irrev} и механического гистерезиса $\Delta \sigma$ в монокристаллах сплава Co₄₉Ni₂₁Ga₃₀ при деформации сжатием: a — ось сжатия [001]; b — ось сжатия [$\bar{1}23$]; $1 - \sigma_{cr}$, $2 - \Delta \sigma$, $3 - \varepsilon_{SE}$, $4 - \varepsilon_{irrev}$, 5, 6 — пример " $\sigma - \varepsilon$ " кривых соответственно при T = 300и T = 623 K.

При $M_s < T < M_d$ наблюдается рост $\sigma_{cr}(T)$, который обусловлен развитием под нагрузкой B2–L1₀ МП. При $T > M_d$ происходит уменьшение $\sigma_{cr}(T)$ с ростом температуры, и эта стадия связана с пластической деформацией высокотемпературной B2-фазы.

Из термодинамического анализа развития МП под нагрузкой при $T > M_s$ следует, что напряжения, необходимые для начала превращений σ_{cr} , линейно возрастают с ростом температуры испытания и скорость их роста $\alpha = d\sigma_{cr}/dT$ описывается соотношением

Рис. 1 (продолжение).

Клапейрона-Клаузиуса [6]:

$$\frac{d\sigma_{cr}}{dT} = -\frac{\Delta S}{\varepsilon_0} = -\frac{\Delta H}{\varepsilon_0 T_0}.$$
(1)

Здесь ε_0 — деформация превращения, ΔS , ΔH — соответственно энтропия и энтальпия для B2–L1₀ MП, T_0 — температура химического равновесия фаз.

В монокристаллах [001] зависимость $\sigma_{cr}(T)$ в интервале температур от $M_s = 240$ К до $M_d = 800$ К оказывается близкой к линейной зависимости, как это следует из соотношения (1). Величина $\Delta T_{SIM} = M_d - M_s = 560$ К (ΔT_{SIM} — температурный интервал образования мартенсита под нагрузкой). В этих монокристаллах СЭ наблюдается от $T = A_f = 257$ К до $T_2 = 698$ К, и ее величина ε_{SE} зависит от температуры испытания (рис. 1, *a*, кривые 1, 3). При $A_f < T < 623$ К $\varepsilon_{SE} = 3.8 - 4.5\%$ и величина необратимой деформации ε_{irrev} близка к нулю (рис. 1, *a*, кривые 3, 4). При 623 К < T < 698 К ε_{SE} уменьшается до 1.5%, одновременно происходит рост ε_{irrev} от нуля до 0.5%. Величина

механического гистерезиса остается постоянной при $A_f < T < 423$ K, а при T > 423 K происходит быстрый рост $\Delta \sigma$ (рис. 1, *a*, кривая 2).

В монокристаллах [$\overline{1}23$] на зависимости $\sigma_{cr}(T)$ при $M_s < T < M_d$ можно выделить два участка. При $M_s < T < 423$ К наблюдается линейная зависимость с $\alpha = d\sigma_{cr}/dT = 2.2$ МРа/К, а при $423 < T < M_d$ происходит уменьшение α . СЭ в этих ориентациях в отличие от монокристаллов [001] начинается при $T = A_f + 30$ К и завершается при $T_2 = 523$ К. Следовательно, ΔT_{SE} и T_2 , оказывается, зависят от ориентации кристаллов. В [$\overline{1}23$] ΔT_{SE} равен 233 К, а $T_2 = 523$ К. Видно (рис. 1, *b*, кривые 2-4), что при 290 К < T < 423 К величина ε_{SE} равна 2.8–3.0%, ε_{irrev} оказывается близкой к нулю, а величина механического гистерезиса $\Delta \sigma$ растет с повышением *T*. При 423 К < T < 623 К наблюдается рост $\Delta \sigma$ почти в 8–10 раз, одновременно происходит увеличение необратимой деформации ε_{irrev} . С повышением температуры испытания происходит уменьшение величины ε_{SE} от 3% при T = 290 К до 1% при T = 700 К.

Из электронно-микроскопических и металлографических исследований следует, что, во-первых, после испытаний при $T \leq 623$ К высокотемпературная фаза имеет B2 структуру. Металлографически на поверхности образцов наблюдаются крупные частицы γ -фазы. Мартенсит охлаждения имеет L1₀ тетрагональную решетку, и толщина двойников составляет 150–200 nm (рис. 2, *a*). При T < 423 К узкий гистерезис $\Delta \sigma$ связан с образованием одного варианта мартенсита, при 423 К < T < 623 К рост $\Delta \sigma$ обусловлен появлением нескольких вариантов мартенсита напряжений. В образцах, деформированных при 623 К < T < 800 К, наблюдается выделение частиц γ' -фазы размером 50 nm при T = 723 К и 100 nm при T = 800 К. В монокристаллах [001] происходит выделение четырех кристаллографически эквивалентных вариантов частиц, а в [123] и [124] — одного варианта частиц (рис. 2, *b*, *c*). Частицы когерентно сопряжены с матрицей, имеют неравноосную форму с нормалью к плоскости габитуса {111}.

Образование одного варианта частиц γ' -фазы в монокристаллах [123] под нагрузкой приводит к появлению внутренних напряжений, связанных с различием в атомных параметрах дисперсных частиц и мартенсита. Эти внутренние напряжения способствуют развитию B2–L1₀ МП при меньших внешних напряжениях, и в результате $\alpha = d\sigma_{cr}/dT$ уменьшается при T > 623 К. В монокристаллах [001] образование четырех вариантов частиц γ' -фазы под нарузкой не способствуют образованию

Рис. 2. Электронно-микроскопические исследования структуры мартенсита и дисперсных частиц γ' -фазы в монокристаллах сплава Co₄₉Ni₂₁Ga₃₀ при деформации сжатием: a — in situ эксперимент наблюдения L1₀-мартенсита при охлаждении в колонне микроскопа до T = 143 К в монокристаллах [001] в исходном состоянии без частиц γ' -фазы, МД — ось зоны [001] в координатах В2 фазы; b — тонкая структура L1₀-мартенсита при in situ охлаждении в колонне микроскопа до T = 143 К после деформации монокристаллов [001] при T = 800 К. Выделяется четыре варианта частиц γ' -фазы, двойники имеют толщину 15 nm, МД — ось зоны [001] в координатах В2 фазы; c — один вариант частиц γ' -фазы в монокристаллах [123] при старении под сжимающей нагрузкой при T = 773 К в течение 40 min.

nn

Рис. 2 (продолжение).

внутренних напряжений и зависимость $\sigma_{cr}(T)$ при $M_s < T < M_d$ состоит из одной стадии.

Дисперсные частицы изменяют тонкую структуру кристаллов L1₀мартенсита и B2–L1₀ МП, как показывают in situ эксперименты, происходит в объемах между частицами. Дисперсные частицы являются препятствиями для кристаллов L1₀-мартенсита, сами не испытывают МП и деформируются упруго. Толщина двойников в этом случае уменьшается почти в 10 раз по сравнению с однофазными монокристаллами и равна 15–20 nm (рис. 2, *a*, *b*). Частицы могут подавлять раздвойникование мартенсита, и это является причиной уменьшения ε_{SE} при T > 623 K по сравнению с исходными значениями ε_{SE} при Tвблизи комнатной.

В монокристаллах [001] высокие значения ΔT_{SE} и T_2 связаны с достижением высокопрочного состояния высокотемпературной B2-фазы за счет ориентационной зависимости σ_{cr} и выделения дисперсных частиц γ' -фазы в ходе испытания. Высокие прочностные свойства B2-фазы при T < 623 К обусловлены близкими к нулю значениями фактора Шмида для систем скольжения $a\langle 100\rangle\{100\}$ в этих интерметаллидах. В результате процессы локального сосльжения не происходят вплоть до T = 623 К и при $\sigma_{cr}(T = 623) = 900$ МРа не происходит накопления необратимой деформации ε_{irrev} . Возникшая при прямом B2–L10 МП упругая энергия ΔG_{el} не релаксирует и способствует развитию обрат-

ных B2–L1₀ МП при снятии нагрузки. При T > 623 К происходит выделение дисперсных частиц γ' -фазы, которые дополнительно упрочняют B2-фазу, измельчают кристаллы мартенсита. При $T \ge 693$ К развитие B2–L1₀ МП под нагрузкой сопровождается локальным пластическим течением в высокотемпературной B2-фазе. Возникающая при B2–L1₀ МП упругая энергия релаксирует, и происходит рост рассеянной энергии. В результате кристаллы L1₀-мартенсита теряют способность к обратному B2–L1₀ МП при разгрузке.

В монокристаллах [123] из-за высоких значений фактора Шмида m = 0.43 для скольжения по системам $a\langle 100\rangle\{100\}$, процессы локального пластического течения достигаются при $T_2 = 523$ К и $\sigma_{cr}(T_2) =$ = 580 МРа до начала процесса выделения частиц γ' -фазы. Это приводит к росту механического гистерезиса $\Delta\sigma$ и к уменьшению величины СЭ.

Итак, управление температурным интервалом СЭ в монокристаллах сплава $Co_{49}Ni_{21}Ga_{30}$ достигается выбором ориентации [001], обеспечивающей высокие прочностные свойства высокотемпературной В2-фазы за счет близких к нулю значений факторов Шмида для систем скольжения $a\langle 100\rangle\{100\}$ и упрочнения при выделении дисперсных частиц γ' -фазы размером 50–100 nm при испытании. В этих монокристаллах В2–L1₀ МП под нагрузкой могут наблюдаться от 260 до 698 К.

Работа выполнена при финансовой поддержке грантов РФФИ 05-08-17915а, 08-08-91952-ННИО_а.

Список литературы

- Dadda K., Maier H.J., Karaman I., Karaka H.E., Chumlyakov Y.I. // Scripta Mater. 2006. V. 55. P. 663–666.
- [2] Dadda J., Canadinc D., Maier H.J., Karaman I., Karaka H.E., Chumlyakov Y.I. // Philosophical Magazine. 2007. V. 7. N 16. P. 2313–2322.
- [3] Киреева И.В., Чумляков Ю.И., Победенная З.В., Караман И., Калашников И.С. // Докл. РАН. 2007. Т. 52. № 9. С. 488–492.
- [4] Чумляков Ю.И., Киреева И.В., Караман И. и др. // Изв. вузов. Физика. 2004. Т. 47. № 9. С. 4–20.
- [5] Chernenko V.A., Pons J., Cezari E., Zasimchuk I.K. // Scripta Mater. 2004. V. 50. P. 225–229.
- [6] Otsuka K., Wayman C.M. Shape memory materials. Cambridge University PRESS, 1998. 284 p.