о5;07 Оптические фононы и симметрия Hg₂F₂

© Ю.Ф. Марков, Е.М. Рогинский

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Yu.Markov@mail.ioffe.ru

Поступило в Редакцию 28 апреля 2008 г.

Экспериментально наблюдены четные оптические фононы в спектрах комбинационного рассеяния света поликристаллов Hg₂F₂. Из рентгеноструктурного анализа и теоретико-группового рассмотрения установлены симметрия Hg₂F₂ (D_{4h}^{17}) и правила отбора в колебательных спектрах. Полученные результаты обсуждены в сравнении со спектрами изоморфных аналогов Hg₂Hal₂ и интерпретированы.

PACS: 61.05.js, 78.30.-j

Кристаллы галогенидов одновалентной ртути Hg₂Hal₂ (Hal = Cl, Br, I) изоморфны при комнатной температуре и образуют объемноцентрированную тетрагональную решетку D_{4h}^{17} с двумя линейными Hal-Hg-Hg-Hal молекулами (вдоль оптической оси $C_4(Z)$) в элементарной ячейке [1,2]. Цепочечное строение этих кристаллов приводит к очень сильной анизотропии упругих и оптических свойств. Например, кристаллы Hg₂I₂ имеют рекордно низкую среди твердых тел скорость поперечного (TA) звука $V_{[110]}^{[110]} = 254$ m/s, рекордно высокие двулучепреломление $\Delta n = +1.5$ и коэффициент акусто-оптического взаимодействия ($M_2 = 4284 \cdot 10^{-18}$ CGSU для TA-волны) [3]. Эти кристаллы используются в технике как основные элементы акустооптических фильтров, акустических линий задержки, поляризаторов, модуляторов, дефлекторов и др.

При охлаждении, при температуре $T_c = 186 \text{ K}$ в кристаллах Hg₂Cl₂ и $T_c = 144 \text{ K}$ в Hg₂Br₂ происходят несобственные сегнетоэластические фазовые переходы из тетрагональной фазы в ромбическую $(D_{4h}^{17} \rightarrow D_{2h}^{17})$, индуцированные конденсацией наиболее медленной, мягкой TA-ветви в X-точках границы зоны Бриллюэна (ЗБ) тетрагональной парафазы. Переходы сопровождаются при $T \leq T_c$ удвоением элементарной ячейки и возникновением спонтанной деформации [4,5]. Фазовый переход в кри-

18

сталлах Hg₂I₂ удалось реализовать лишь при высоком гидростатическом давлении ($P_c = 9$ Kbar при T = 293 K) [6].

Галогениды одновалентной ртути, обладающие очень простой кристаллической структурой и ярко выраженными эффектами фазовых переходов, являются модельными объектами при изучении общих проблем структурных фазовых переходов.

Фторид одновалентной ртути Hg_2F_2 при комнатной температуре, по-видимому, изоморфен вышеупомянутым галогенидам ртути и имеет близкие значения параметров элементарной ячейки и межатомных расстояний к кристаллам других соединений Hg_2Hal_2 [7,8]. Однако мы неоднократно проводили химический синтез и приобретали коммерческую шихту (чистота которой не превышает 95–98%) этого практически неизученного соединения Hg_2F_2 , но все наши попытки были тщетны ни рентгеновские, ни прецизионные оптические исследования не давали однозначного и объяснимого результата в рамках знаний об этом соединении.

Следует заметить, что структура и симметрия Hg_2F_2 (по материалам некоторых статей и справочников) до настоящего времени является спорной — от кубической, тетрагональной до моноклинной (см., например, [9]). Возможно, что такая неоднозначность связана со сложной фазовой диаграммой и сложным синтезом этого соединения (Hg_2F_2), когда в нем могут присутствовать HgF_2 (фторид 2-валентной ртути), HF, HgO и другие примеси. Очевидно, что под воздействием света или температуры, по аналогии с поведением Hg_2Cl_2 и Hg_2Br_2 , может иметь место декомпозиция Hg_2F_2 с образованием HgF_2 + Hg. При изучении этого соединения по аналогии с другими галогенидами одновалентной ртути (см., например, [4–6]) нельзя забывать и о возможности структурного фазового перехода в нем, индуцированного как температурой, так и давлением.

Спектры комбинационного рассеяния регистрировались при помощи тройного Раман-спектрометра Dilor-Z24 с использованием аргонового и гелий-неонового лазеров с длинами волн излучения $\lambda = 5145$ Å и $\lambda = 6328$ Å, соответственно, мощности которых варьировались от нескольких до десятков mW. Рентгеноструктурные измерения выполнялись на двухкружных дифрактометрах, использовалось K_{α} излучение медного анода и "2 θ - θ " сканирования. В обеих методиках в качестве образцов использовался порошок Hg₂F₂ с размерами зерен от нескольких микрон до десятков.

Рис. 1. Спектры комбинационного рассеяния поликристалла Hg_2F_2 и монокристаллов Hg_2Cl_2 , Hg_2Br_2 и Hg_2I_2 в различных поляризациях XZ(YZ) (штриховые линии) и ZZ (сплошные линии) (линии, обозначенные * соответствуют СКР II-го прорядка).

На рис. 1 вверху можно видеть спектр комбинационного рассеяния (СКР) поликристаллических образцов Hg₂F₂, полученный при комнатной температуре. Здесь же (рис. 1) для сравнения ниже приведены поляризованные СКР (T = 300 K) других изоморфных кристаллов Hg₂Hal₂. Из поляризационных измерений спектров, теоретико-группового анализа и правил отбора для колебательных спектров, динамических расчетов и т.д., выполненных ранее (см., например, [10,11]), следует однозначная интерпретация СКР кристаллов Hg2Cl2, Hg2Br2 и Hg2I2. В спектрах наблюдается по две линии v_1 , v_2 в поляризации XZ(YZ) (E_g -симметрия) и v₃, v₄ в поляризации ZZ (A_{1g}-симметрия), что полностью согласуется с результатами теоретико-группового рассмотрения, согласно которому в СКР первого порядка этих кристаллов, имеющих при комнатной температуре тетрагональную решетку D_{4h}^{17} и одну формульную единицу (четырехатомную линейную молекулу Hal-Hg-Hg-Hal) в примитивной ячейке, разрешены четыре колебания: два дважды вырожденных симметрии $E_g(XZ, YZ)$ и два полносимметричных $A_{1g}(XX + YY, ZZ)$ [10,11] (в скобках указаны компоненты поляризуемости, активные в СКР). Следует заметить, что первое колебание симметрии Eg — это либрация качание линейной молекулы как целого относительно горизонтальной оси X (или Y), обозначенное v_1 . Второе колебание симметрии E_g — деформационное "зигзагообразное" (v2). Полносимметричные валентные колебания A_{1g} соответствуют главным образом смещениям Hg-Hg (v₃) и Hal-Hg (v_4) .

В случае поликристаллов Hg_2F_2 , использованных в настоящей работе, необходимо было выполнить предварительные рентгеноструктурные измерения. На рис. 2 приведены экспериментальная (из " $2\theta-\theta$ " сканирования) и теоретическая дифрактограммы при комнатной температуре. Последняя построена с использованием расчетной программы "Powderwin" для тетрагональной решетки $Hg_2F_2(D_{4h}^{17})$ с параметрами, взятыми из работ [7,8]. Видно полное соответствие всех брэгговских рефлексов в теоретической и экспериментальной кривых, хотя и имеется несколько лишних малоинтенсивных максимумов в эксперименте, что можно связать с недостаточной чистотой исходной шихты.

Таким образом, в исследованных нами образцах сохраняется тетрагональная решетка, аналогичная другим галогенидам одновалентной ртути. Следовательно, правила отбора для колебательных спектров кристаллов Hg_2F_2 должны быть такими же, как и в случае исходных кристаллов Hg_2Hal_2 , т. е. в спектре должны наблюдаться 4 линии в соответ-

Рис. 2. Теоретические и экспериментальные (" $2\theta - \theta$ " сканирование) дифрактограммы использованных в работе порошков Hg₂F₂.

ствующих поляризациях. Естественно, поляризационные исследования поликристаллического Hg₂F₂ не проводились, так как такие измерения порошкообразных образцов не несут строгой информации. В спектрах Hg₂F₂ были экспериментально обнаружены лишь 3 линии, а именно: $v_1 = 41(4) \text{ cm}^{-1}$ — либрация симметрии E_g , $v_3 = 196$ (6) cm⁻¹ — валентное колебание A_{1g} , соответствующее главным образом смещениям Hg–Hg, и $v_4 = 350$ (9) cm⁻¹ — валентное колебание A_{1g} , соответствующее смещениям F–Hg. Заметим, что в скобках приведены полуширины линий спектра. Дважды вырожденное деформационное колебание v_2 симметрии E_g , имеющее в спектрах изоморфных аналогов Hg₂Cl₂, Hg₂Br₂ и Hg₂I₂ наименьшие интенсивности, уверенно наблюдать не удалось.

Выполненные предварительные динамические расчеты частот и интенсивностей колебаний в Hg_2F_2 показали, что интенсивность этого

Частоты нормальных колебани	ий и полуширина	линий спектра	(в скобках)
-----------------------------	-----------------	---------------	-------------

Химическая формула	Частоты колебаний, сm $^{-1}$			
	$\nu_1(E_g)$	$v_2(E_g)$	$\nu_3(A_{1g})$	$ u_4(A_{1g})$
$\begin{array}{l} Hg_2F_2\\ Hg_2Cl_2\\ Hg_2Br_2\\ Hg_2I_2 \end{array}$	41(4) 40(2) 35(2) 30(3)	$117(15) \\ 137(12) \\ 91(8) \\ 74(10)$	196(6) 167(2) 135(4) 113(4)	350(9) 275(9) 221(8) 192(5)

колебания должна быть на несколько порядков меньше, чем интенсивность остальных линий спектра, что, по-видимому, связано с аномально маленькими зарядом и радиусом ионов фтора, приводящими к очень малому изменению поляризуемости при этих колебаниях. Однако, при дальнейшем тщательном поиске новых линий в спектре, в интервале частот между сильными линиями v_1 и v_3 , где и должна находиться линия v_2 , была обнаружена очень малоинтенсивная линия с частотой 117 сm⁻¹ и значительной полушириной.

На рис. 1 видна удовлетворительная корреляция всех линий спектра (кроме v_2) для вышеупомянутых четырех соединений. Имеется хорошее соответствие как частот, так и интегральных интенсивностей, но полуширины линий в спектре Hg₂F₂ заметно больше, чем в случае других изоморфных соединений, что можно объяснить неоднородным уширением, связанным со значительной дефектностью порошкообразных образцов по сравнению с монокристаллами. Для лучшего восприятия вышесказанного основные характеристики линий спектра всех четырех соединений приведены в таблице. Из рис. 1 и таблицы видно, что самая низкочастотная линия, соответствующая либрационному колебанию v₁ — качанию линейной молекулы как целого, имеет минимальную полуширину и большую интенсивность. Либрация, которую в некотором приближении можно рассматривать как заторможенный ротатор, обычно имеет большую интенсивность, связанную с большой амплитудой колебаний, приводящей к сильному изменению поляризуемости. Частоты этих колебаний возрастают в ряду соединений $Hg_2I_2-Hg_2Br_2-Hg_2Cl_2-Hg_2F_2$ и равны соответственно 30-35-40-41 cm⁻¹. Рост частот и должен был иметь место в связи с уменьшением момента инерции молекулы Hg₂Hal₂, вызванным

понижением массы галогена в этой последовательности соединений, да и пренебрегать изменением силовых констант в этом ряду соединений также нельзя.

Колебание $v_2(E_g)$ — деформационное "зигзагообразное" имеет во всем ряду изоморфных соединений Hg₂Hal₂ минимальную интенсивность и максимальную полуширину, связанную с большим ангармонизмом этих колебаний (см. таблицу). Возможно, что на аномальное уменьшение интенсивности этого колебания в Hg₂F₂ влияет (кроме вышесказанного) также аномально малая величина постоянной решетки в базисе, равная a = 3.66 Å [7,8], блокирующая амплитуду этих колебаний.

Валентное колебание $v_3(A_{1g}) = 196 \text{ cm}^{-1}$, соответствующее главным образом смещениям Hg–Hg (отметим, что в это колебание вносят также небольшой вклад смещения Hal–Hg), во всех галогенидах одновалентной ртути является характеристичным по интенсивности, но не по частоте, так как в ряду Hg₂I₂–Hg₂Br₂–Hg₂Cl₂–Hg₂F₂ заметно уменьшаются расстояния Hg–Hg [1.2,7,8] и соответственно увеличиваются силовые постоянные, приводящие к увеличению частоты колебаний v_3 . Заметим также, что энергия связи Hg–Hg, например, в соединениях Hg₂F₂ равна 10 kcal/mol, а в Hg₂Cl₂ лишь 8 kcal/mol, что подтверждает наши предыдущие рассуждения.

Величина частоты валентного колебания Hal-Hg- $\nu_4(A_{1g})$ в Hg₂F₂ аномально высока и составляет 350 cm⁻¹, но ввиду того, что частоты валентных колебаний Hal-Hg- $\nu_4(A_{1g})$ очень сильно увеличиваются от соединения к соединению в этом ряду, что главным образом связано с уменьшением приведенной массы $\mu = m_{Hal} \cdot m_{Hg}/(m_{Hal} + m_{Hg})$ при "движении" от тяжелого йода (Hg₂I₂) к легкому фтору (Hg₂F₂), вполне объяснима в этом подходе.

Обратимся к работе [9], в которой ранее изучались Раман-спектры, якобы, этих соединений (Hg_2F_2) . При выполнении этой работы в течение длительного времени и при достаточно высокой температуре (что могло вызвать термодекомпозицию) выращивались в отпаянной ампуле микрокристаллы из исходной шихты Hg_2F_2 . В результате в ампуле выросли кристаллы двух типов (по цвету и по симметрии), причем, как считает автор, одни Hg_2F_2 , а другие — не известно какие? Возможно, последние являются продуктами распада Hg_2F_2 . Кроме этого, спектры и рентгенограммы, которые получил автор, не соответствуют тетрагональной симметрии D_{4h}^{17} этих кристаллов и, есте-

ственно, не имеют никакого отношения к кристаллам истинного фторида одновалентной ртути Hg_2F_2 . Привлечение же автором работы [9] к объяснению полученного им сложного спектра комбинационного рассеяния структурного фазового перехода, аналогичного переходам в других галогенидах одновалентной ртути Hg_2Hal_2 (Hal = Cl, Br, I) (см., например, [4,5]), совершенно не обоснованно, так как не имеет никакого экспериментального подтверждения.

Итак, из выполненных нами исследований следует вывод, что изученное соединение Hg_2F_2 при комнатной температуре имеет тетрагональную симметрию, с учетом которой, а также результатов теоретикогруппового рассмотрения, правил отбора для колебательных спектров и сравнения со спектрами изоморфных аналогов Hg_2Hal_2 , полученные спектры удалось полностью интерпретировать.

В заключение авторы выражают благодарности А.А. Каплянскому за обсуждение полученных результатов и программам РФФИ (грант № 05-08-33431), президиума РАН (П-03), ОФН РАН и субсидии молодым ученым, молодым кандидатам наук и академических институтов, расположенных на территории Санкт-Петербурга (грант № 112-мкн) за финансовую поддержку настоящей работы.

Список литературы

- [1] Havighurst R.J. // J. Am. Chem. Soc. 1926. V. 48. P. 2113.
- [2] Mark H., Steinbach J. // Z. Krystallogr. 1926. V. 64. P. 79.
- [3] Proc. II Int. Symposium on Univalent Mercury Halides Trutnov, ČSSR, 1989. P. 1–265.
- [4] Барта Ч., Каплянский А.А., Кулаков В.В., Малкин Б.З., Марков Ю.Ф. // ЖЭТФ. 1976. Т. 70. № 4. С. 1429.
- [5] Каплянский А.А., Марков Ю.Ф., Барта Ч. // Изв. АН СССР. Сер. физ. 1979.
 Т. 43. В. 8. С. 1641.
- [6] Барта Ч., Каплянский А.А., Марков Ю.Ф., Мировицкий В.Ю. // ФТТ. 1985.
 Т. 27. В. 8. С. 2500.
- [7] Ebert F., Woitinel H. // Z. Anorg. Chem. 1933. V. 210. P. 269.
- [8] Grednic D., Djordjevic C. // J. Chem. Soc. 1956. V. 6. P. 1316.
- [9] Emura S. // J. Phys.: Condens. Matter. 1990. V. 2. P. 7877.
- [10] Барта Ч., Каплянский А.А., Марков Ю.Ф. // ФТТ. 1973. Т. 15. С. 2835.
- [11] Барта Ч., Каплянский А.А., Кулаков В.В., Марков Ю.Ф. // Опт. и спектр. 1974. Т. 37. С. 95.