07 Динамика спада оптического пропускания в ячейках с двухчастотным нематическим жидким кристаллом

© Е.А. Коншина, М.А. Федоров, Л.П. Амосова, М.В. Исаев, Д.С. Костомаров

Санкт-Петербургский государственный университет информационных технологий, механики и оптики E-mail: eakonshina@mail.ru

Поступило в Редакцию 29 августа 2007 г.

Проведены экспериментальные исследования динамики *S*-эффекта двухчастотного НЖК. Показано влияние разных схем управления переориентацией директора молекул в электрическом поле, включая питание прямоугольным импульсом напряжения постоянного тока и переменным синусоидальным напряжением низкой и высокой частоты, на время подъема и спада оптического пропускания. Установлено, что присутствие тонкого диэлектрического слоя *a*-С:Н на границе с НЖК способствует снижению на порядок времени спада пропускания при приложении высокочастотного поля к ячейкам по сравнению со временем естественной упругой релаксации при управлении только подъемом пропускания.

PACS: 77.84.Nh, 78.20.Fm, 78.20.Jg

Использование двухчастотных (dual-frequency DF) нематических жидких кристаллов (НЖК) в электрооптических устройствах является одним из путей повышения быстродействия оптических телекоммуникационных систем [1,2]. Это обусловлено возможностью, изменяя частоту, амплитуду, длительность и форму импульса напряжения электрического поля, управлять динамикой электрооптического отклика [3,4]. Применение DF НЖК основано на эффекте инверсии знака диэлектрической анизотропии $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$, где ε_{\parallel} и ε_{\perp} — диэлектрическая проницаемость, параллельная и перпендикулярная длинной оси молекул. С увеличением частоты приложенного поля ε_{\parallel} будет уменьшаться, в то время как ε_{\perp} будет оставаться постоянной. Переходная (crossover) частота f_c , при которой изменяется знак $\Delta \varepsilon$, является характерной

87

Ячейка	Ориентирующая поверхность	НЖК	$d, \mu m$	$\Delta\Phi_{ m max}/2\pi$	U_{th}, \mathbf{V}	θ_p , deg
Α	GeO	ЖК-1001	13	2.75	1.6	42
В	GeO/a-C:H	ЖК-1001	13.3	4.2	2.9	26
С	GeO	BL-037	13.5	4.65	0.7	22
D	GeO/a-C:H	BL-037	13.5	6	1.1	6

Таблица 1. Конструктивные особенности и характеристики НЖК-ячеек

особенностью DF НЖК: $\Delta \varepsilon > 0$ на частотах ниже переходной и $\Delta \varepsilon < 0$ на частотах выше f_c . Для реализации *S*-эффекта Фредерикса к DF НЖК-ячейке прикладывается низкочастотное (low frequency LF) электрическое поле, которое приводит к увеличению угла наклона директора относительно подложки и к подъему пропускания. При приложении высокочастотного (high frequency HF) поля происходит переориентация молекулярных диполей из положения с высоким углом наклона в исходное состояние. Эта особенность DF НЖК позволяет осуществлять электроуправляемый спад оптического пропускания, что ускоряет процесс возвращения директора в исходное состояние. Характеристики ячеек, включая толщину НЖК-слоя *d*, максимальную фазовую задержку $\Delta \Phi_{max}/2\pi$, пороговое (threshold) напряжение эффекта Фредерикса U_{th} и начальный (pretilt) угол наклона директора θ_p , приведены в табл. 1.

В этой статье сообщается об исследовании динамики переориентации DF НЖК при питании ячеек синусоидальным напряжением низкой и высокой частоты и прямоугольным импульсом напряжения постоянного тока, а также о влиянии разных схем управления питанием ячеек и изменения условий на границе раздела фаз на время спада оптического пропускания.

Экспериментальные исследования проводили на плоских ячейках с симметричными граничными условиями. Стеклянные подложки, образующие плоскую ячейку, были покрыты тонким проводящим слоем на основе окислов индия и олова, полученным катодным распылением. В ячейках A и C в качестве ориентирующей поверхности был использован слой моноокиси германия GeO, полученный наклонным напылением в вакууме, а в ячейках B и D поверхность GeO была дополнительно покрыта тонким диэлектрическим слоем a-C:H, осажденным из паров

ацетона в плазме тлеющего разряда. Для реализации *S*-эффекта ячейки собирали таким образом, чтобы направления ориентации директора ЖК на обеих подложках были антипараллельны. Толщина зазора ячеек *d* определялась фторопластовыми прокладками и была около 13 μ m. Ячей-ки заполняли жидким кристаллом в нематической фазе в условиях вакуума. В работе использовали DF НЖК-1001 (НИОПИК) с оптической анизотропией $\Delta n = 0.26$ на длине волны 632.8 nm, $\Delta \varepsilon = 4.43$ ($\varepsilon_{\parallel} = 9.53$ и $\varepsilon_{\perp} = 5.1$) на частоте 1 kHz [5] и $f_c = 10$ kHz [6]. Для сравнения были исследованы ячейки *C* и *D*, заполненные обычным НЖК фирмы Merck BL-037 с положительной $\Delta \varepsilon = 16.9$ и $\Delta n = 0.282$.

Были применены разные схемы управления переориентацией диполей молекул НЖК. Двухчастотное управление (dual-frequency addressing — DFA) осуществляли, используя два генератора для подачи на ячейку синусоидального напряжения LF и HF электрических полей и два генератора, управляющих длительностью действия эти полей. Электрическая схема переключения позволяла варьировать частоту, амплитуду подаваемого напряжения и длительность действия LF (τ_{LF}) и HF (τ_{HF}) полей. Для подъема оптического пропускания прикладывали напряжение с частотой 1 kHz, а спадом пропускания в НЖК-ячейке управляли, прикладывая напряжение с частотой 30 kHz. Динамику спада пропускания при двухчастотном управлении сравнивали с динамикой естественной упругой релаксации молекул после прекращения действия переменного или постоянного поля.

В качестве источника света в электрооптической схеме использовали He–Ne-лазер с длиной волны 632.8 nm. НЖК-ячейку располагали между скрещенными поляризатором и анализатором. Сигнал, прошедший через ячейку, поступал на фотодиод и затем подавался на осциллограф, как показано в работе [7]. Время подъема и спада оптического пропускания определяли по уровню 0.1–0.9 максимальной интенсивности света, прошедшего через ячейку. В табл. 1 приведены характеристики НЖК-ячеек, полученные по методикам, описанным в [8]. В табл. 2 даны амплитуды LF (U_{pp}^l) и HF (U_{pp}^h) управляющих напряжений и времена подъема (τ_{on}) и спада (τ_{off}) оптического пропускания для разных схем управления питанием НЖК-ячеек.

На рис. 1 показаны кривые электрооптического отклика НЖКячейки A. Спад пропускания при питании $U_{pp}^{l} = 32$ V с частотой 1 kHz (рис. 1, кривая I) проходил в результате упругой релаксации за время $\tau_{off} = 2.5$ s. В схеме DFA при $U_{pp}^{l} = 32$ V и $U_{pp}^{h} = 36$ V (кривая 2 на

Таблица 2. Схемы управления, амплитуды прикладываемых напряжений, времена подъема и спада оптического пропускания НЖК-ячеек для случая, когда длительность HF напряжения $\tau_{\rm HF}$ совпадает с τ_{off} .

№ опыта	Ячейка	Схемы управления	$U_{pp}^{l},\ U, \mathrm{V}$	$ au_{on},$ ms	$V^h_{pp}, \ { m V}$	$ au_{off}, extbf{s}$
1	Α	LFA	32	150	0	2.5
2	Α	DFA	32	150	36	1
3	Α	SW/HFA	30*	15	15	0.6
4	В	LFA	32	90	0	2.5
5	В	DFA	32	90	36	0.25
6	В	DFA	27	250	45	0.1
7	В	SW/HFA	45*	6	33	0.6
8	С	LFA	20	50	0	2
9	С	SW	20*	7	0	2.8
10	D	LFA	20	30	0	1
11	D	SW	20*	8	0	4

* — напряжение постоянного тока.

рис. 1) наблюдается процесс переориентации молекулярных диполей под действием упругих сил после прекращения действия HF поля и $\tau_{off} > \tau_{\rm HF} = 0.6$ s. Спад пропускания заканчивается полностью за время

Рис. 1. Электрооптический отклик НЖК-ячейки *A*, полученный при одночастотной адресации и постоянном значении $U_{pp}^{l} = 32 \text{ V}(I)$ и для двухчастотной адресации при $U_{pp}^{l} = 32 \text{ V}$ и $U_{pp}^{h} = 36 \text{ V}$, когда $\tau_{h} = 0.6 \text{ s}(2)$ и $\tau_{h} = 1 \text{ s}(3)$.

Рис. 2. Электрооптический отклик НЖК-ячейки *B*, полученный при двухчастотной адресации и постоянных значениях $U_{pp}^{l} = 32$ V и $\tau_{h} = 250$ ms, когда $U_{pp}^{h} = 36$ V (1), $U_{pp}^{h} = 25$ V (2), $U_{pp}^{h} = 38$ V (3).

действия НF поля (кривая *3* на рис. 1), когда $\tau_{off} = \tau_{\rm HF} = 1$ s. При DFA ячейки *B* при тех же напряжениях спад пропускания происходит в 4 раза быстрее за $\tau_{off} = 250$ ms (№ 5 в табл. 2). Ускорение переориентации молекулярных диполей в ячейке *B* может быть связано с уменьшением сопротивления тонкого слоя диэлектрика *a*-C: Н в HF поле, что должно приводить к росту падения напряжения на слое НЖК. Использование схемы DFA позволило на порядок уменьшить время спада у ячейки *B* по сравненияю с τ_{off} при естественной релаксации (№ 4 в табл. 2).

На рис. 2 показан электрооптический отклик ячейки *B* при разных амплитудах приложенного напряжения HF поля и постоянном значении $\tau_{\rm HF} = 250$ ms. Условиям полной переориентации молекул HЖК при $U_{pp}^{h} = 36$ V соответствует кривая *I* на рис. 2. При амплитудах $U_{pp}^{h} = 25$ V и $U_{pp}^{h} = 38$ V (кривые 2 и 3 на рис. 2) наблюдается увеличение τ_{off} , что свидетельствует о продолжении процесса переориентации за счет упругих сил после прекращения действия HF поля. Этот эксперимент указывает на корреляцию между амплитудой U_{pp}^{l} LF колебаний и амплитудой U_{pp}^{h} HF колебаний, при которой процесс переориентации директора HЖК в исходное положение заканчивается полностью, т. е. когда $\tau_{off} = \tau_{\rm HF}$. Уменьшение τ_{off} до 100 ms у ячейки *B* было получено при понижении U_{pp}^{l} до 27 V и $U_{pp}^{h} = 45$ V, однако τ_{on} увеличилось до 250 ms (№ 6 в табл. 2).

Известно, что время переориентации молекулярных диполей в электрическом поле обратно пропорционально квадрату приложенного напряжения. На рис. 3 показаны экспериментальные зависимости

Рис. 3. Зависимости времени спада оптического пропускания от квадрата эффективного напряжения, приложенного к электродам НЖК-ячеек A(1) и B(2) с частотой 30 kHz, полученные при $U_{pp}^{l} = 32$ V и условии $\tau_{off} = \tau_{h}$.

времени спада оптического пропускания для ячеек A и B от квадрата эффективного напряжения, приложенного НF поля, при условии $\tau_{off} = \tau_{\rm HF}$ и постоянной амплитуде $U_{pp}^{l} = 32$ V. Для управления спадом пропускания ячейки A (кривая I на рис. 3) требуются более низкие напряжения по сравнению с ячейкой B, при этом максимальная фазовая задержка $\Delta \Phi_{\rm max}/2\pi = 2.7$, как видно из табл. 1. Присутствие в ячейке Bна границе раздела фаз слоя a-C:H приводит к повышению порога S-эффекта U_{th} и к уменьшению начального угла θ_p наклона директора НЖК от 42 до 26°. При этом $\Delta \Phi_{\rm max}/2\pi$ увеличивается 1.5 раза по сравнению с ячейкой A (табл. 1).

Приложение к ячейкам *С* и *D*, заполненным обычным НЖК, синусоидального напряжения частотой 1 kHz (low-frequency addressing LFA) привело к значительному снижению времени спада пропускания в результате упругой релаксации (N₂ 8 и 10, табл. 2). Вместе с тем τ_{on} возросло в несколько раз по сравнению с питанием этих ячеек прямоугольным импульсом напряжения (square wave-SW) постоянного

тока [9], как видно из табл. 2 (№ 9 и 11). В работе [10] оптимальный режим управления DF НЖК-ячейкой был получен при подаче коротких импульсов с высокой амплитудой напряжения, чтобы инициировать быструю переориентацию директора в LF и HF полях. Однако использование высоких амплитуд частотных колебаний приводит к избыточному вращению молекул при увеличении угла наклона директора НЖК. Путем введения промежуточного периода между действием LF и HF полей порядка 10 µs, во время которого никакого напряжения к НЖК не прикладывается, избыточное вращение может быть аннулировано [11].

В связи с этим были проведены исследования динамики электрооптического отклика ячеек с DF НЖК по схеме, когда польем пропускания осуществлялся при подаче SW импульса длительностью 0.5 s, а возвращение молекул в исходное состояние — с помощью HF поля с частотой 30 kHz. Эта схема позволила значительно снизить время подъема пропускания ячеек при условии $\tau_{off} = \tau_{HF}$. У ячейки А τ_{on} снизилось на порядок до 15 ms при U = 30 V, а у ячейки $B \tau_{on} = 6$ ms — при более высоких амплитудах управляющего напряжения. При этом время спада у ячейки A уменьшилось до 0.6 s, несмотря на понижение U_{pp}^{h} до 15 V по сравнению со схемой DFA (№ 2 и 3 в табл. 2), в то время как у ячейки В т_{off} увеличилось в 2 раза (№ 6 и 7 в табл. 2). Наблюдаемые различия в динамике спада пропускания для ячеек А и В можно объяснить генерацией остаточного напряжения постоянного тока при приложении постоянного электрического поля к слою НЖК в результате процессов адсорбции и десорбции ионных зарядов на межфазной границе [12]. При этом электрический потенциал адсорбированных ионных зарядов будет зависеть не только от свойств НЖК, но и от электрических свойств ориентирующего слоя. Можно ожидать, что он будет выше в ячейках В и D, в которых НЖК граничит со слоем a-C:H, удельное сопротивление которого порядка 10⁻¹³Ω [13].

В результате проведенных исследований электроуправляемого спада оптического пропускания в ячейках с симметричными граничными условиями, заполненных DF НЖК, показано, что при приложении к ячейкам HF поля время спада пропускания можно снизить на порядок по сравнению со временем естественной упругой релаксации, благодаря размещению на границе с НЖК тонкого диэлектрического слоя *a*-C:H. Значительное снижение времени подъема оптического пропускания, наблюдаемое при приложении к ячейкам прямоугольного импульса постоянного тока, может быть вызвано генерацией остаточного напря-

жения постоянного тока на границе раздела фаз в результате разделения ионных зарядов в НЖК. В заключение следует заметить, что изменение граничных условий путем модификации свойств ориентирующей НЖКповерхности можно рассматривать как реальный путь повышения быстродействия фазовых модуляторов света, наряду с оптимизацией электроуправления подъемом и спадом оптического пропускания.

Работа выполнена при поддержке ведущей научной школы РФ (НШ-5549.2006.9) в рамках ФЦП по мероприятию 1.4, финансируемой за счет ГК № 02.514.11.4057.

Список литературы

- [1] Wu Y.-H., Liang X., Lu Y.-Q., Du F., Lin Y.-H., Wu S.-T. // Appl. Opt. 2005. V. 44. N 20. P. 4394-4398.
- [2] Wang Q., He S. // J. of Modern Optics. 2006. V. 53. N 4. P. 481-493.
- [3] Jewell S.A., Sambles J.R. // Optics express. 2005. V. 13. N 7. P. 2627–2633.
- [4] Mottram N.J., Brown C.V. // Phys. Rev. E. 2006. V. 74. P. 031703-1-7.
- [5] Kirby A.K., Love G.D. // Optics express. 2004. V. 12. N 7. P. 1470-1475.
- [6] Коншина Е.А., Костомаров Д.С. // Оптический журнал. 2007. № 10. С. 88– 90.
- [7] Коншина Е.А., Федоров М.А. // Письма в ЖТФ. 2006. Т. 32. В. 22. С. 15-21.
- [8] Коншина Е.А., Федоров М.А., Амосова Л.П. // Оптический журнал. 2006. Т. 73. № 12. С. 9–13.
- [9] Коншина Е.А., Федоров М.А., Амосова Л.П., Воронин Ю.М. // ЖТФ. 2008 (в печати).
- [10] Golovin A.B., Shiyanovskii S.V., Lavrentovich O.D. // Appl. Phys. Lett. 2003.
 V. 83. N 19. P. 3864–3866.
- [11] Brimicombe P.D., Parry-Jones L.A., Elston S.J., Raynes E.P. // J. Appl. Phys. 2005. V. 98. P. 104104-1–6.
- [12] Mizusaki M., Miyashita T., Uchida T., Yamada Y., Ishii Y., Mizushima S. // J. Appl. Phys. 2007. V. 102. P. 014904-1–6.
- [13] Коншина Е.А. // ЖТФ. 2000. Т. 70. В. 3. С. 87-89.