05.4 Экспериментальное определение пространственного распределения электронных дефектов в решетках La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄

© Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Е.И. Теруков

Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: ppseregin@hotmail.ru

Поступило в Редакцию 11 октября 2007 г.

Методом эмиссионной мессбауэровской спектроскопии на изотопах 67 Cu(67 Zn) и 67 Ga(67 Zn) показано, что дырки, появляющиеся в результате замещения La³⁺ на Sr²⁺ в решетке La_{2-x}Sr_xCuO₄, локализованы преимущественно на атомах кислорода, находяшихся в одной плоскости с атомами меди, тогда как электроны, появляющиеся в решетке Nd_{2-x}Ce_xCuO₄ за счет замещения ионов Nd³⁺ на Ce⁴⁺, локализованы в подрешетке меди. Эти результаты находятся в согласии с моделью, предполагающей, что механизмом, ответственным за высокотемпературную сверхпроводимость в решетках La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄, является взаимодействие электронов с двухатомными двухэлектронными центрами с отрицательной корреляционной энергией.

PACS: 74.72.-h, 61.18.Fs

Ваедение. В настоящее время предложено много различных моделей для объяснения природы высокотемпературной сверхпроводимости [1], но лишь немногие из них доведены до состояния, когда возможно не только делать заключение о соответствии их с известными экспериментальными фактами, но и делать предположения о новых ожидаемых эффектах. В частности, в работе [2] результаты исследований свойств высокотемпературных сверхпроводников системы $La_{2-x}Sr_xCuO_4$ и $Nd_{2-x}Ce_xCuO_4$ проанализированы в рамках модели, предполагающей, что механизмом, ответственным за высокотемпературную сверхпроводимость, является взаимодействие электронов с двухатомными двухэлектронными центрами с отрицательной корреля-

79

ционной энергией. В этой модели постулируется, что при достаточно низких температурах допированные дырки в $La_{2-x}Sr_xCuO_4$ жестко локализованы в CuO₂-плоскости на ионах кислорода, принадлежащих кислородному октаэдру (они занимают кристалографические позиции O(2)), а допированные электроны в $Nd_{2-x}Ce_xCuO_4$ — на ионах меди.

Справедливость указанного предположения может быть проверена путем сравнения экспериментальных и рассчитанных параметров ядерного квадрупольного взаимодействия, описывающего взаимодействие электрического квадрупольного момента ядра-зонда с тензором градиента электрического поля (ГЭП) на ядре. В результате такого сравнения оказывается возможным измерить эффективные заряды атомов, а отклонение зарядов от стандартных значений дает возможность судить о пространственном распределении электронов и дырок.

Перспективным методом экспериментального определения параметров ядерного квадрупольного взаимодействия в твердых телах является мессбауэровская спектроскопия на "кристаллических" зондах, т.е. зондах, ГЭП на ядрах которых возникает преимущественно за счет ионов кристаллической решетки [3]. В частности, для решеток La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄ следует использовать эмиссионный вариант мессбауэровской спектроскопии на изотопах ⁶⁷Cu(⁶⁷Zn) и ⁶⁷Ga(⁶⁷Zn): при легировании указанных соединений изотопом ⁶⁷Cu кристаллический зонд ⁶⁷Zn²⁺ после радиоактивного распада ⁶⁷Cu оказывается в медных узлах решеток, а при легировании указанных соединений изотопом ⁶⁷Ga кристаллический зонд ⁶⁷Zn²⁺ после радиоактивного распада ⁶⁷Ga оказывается в узлах редкоземельного металла.

Методика эксперимента. Мессбауэровские источники готовились методом диффузии изотопов ⁶⁷Cu и ⁶⁷Ga в готовые керамики La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄ при температурах 500-650°C в течение 2 h в атмосфере кислорода. Все исходные образцы были однофазными. Для соединений La_{2-x}Sr_xCuO₄ при x = 0.1. 0.15, 0.20, 0.30 получены температуры перехода в сверхпроводящее состояние $T_c = 25$, 37, 27, < 4.2 K. Для Nd_{2-x}Ce_xCuO₄ состав с x = 0 не переходил в сверхпроводящее состояние вплоть до 4.2 K, а для состава с x = 0.15 получено значение $T_c = 22$ K. Для контрольных образцов отжиг в аналогичных условиях не привел к изменению величин T_c . Изотопы ⁶⁷Cu и ⁶⁷Ga получали по реакциям ⁶⁷Zn(n, p)⁶⁷Cu и ⁶⁷Zn(p, n)⁶⁷Ga с последующим выделением безносительных препаратов материнских изотопов методом "сухой" химии [4]. Мессбауэровские

спектры ${}^{67}Cu({}^{67}Zn)$ и ${}^{67}Ga({}^{67}Zn)$ снимались со стандартным поглотителем ZnS при 4.2 К в стеклянном криостате, причем доплеровский модулятор, источник и поглотитель находились в жидком гелии.

Эмиссионные мессбауэровские спектры 67 Cu(67 Zn) и 67 Ga(67 Zn) керамик La_{2-x}Sr_xCuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ представляют собой квадрупольные триплеты, отвечающие единственному состоянию дочерних атомов 67 Zn²⁺ как в узлах меди, так и в узлах лантана.

Компоненты тензора кристаллического ГЭП рассчитывались в рамках модели точечных зарядов по формулам:

$$V_{pp} = \sum_{k} e_{k}^{*} \sum_{i} \frac{1}{r_{ki}^{3}} \left[\frac{3p_{ki}^{2}}{r_{ki}^{2}} - 1 \right] = \sum_{k} e_{k}^{*} G_{ppk},$$

$$V_{pq} = \sum_{k} e_{k}^{*} \sum_{i} \frac{3p_{ki}q_{ki}}{r_{ki}^{5}} = \sum_{k} e_{k}^{*} G_{pqk},$$
(1)

где k — индекс суммирования по подрешеткам, i — индекс суммирования по узлам подрешетки, q, p — декартовы координаты, e_k^* — заряды атомов k-подрешетки, r_{ki} — расстояние от ki-иона до рассматриваемого узла.

Решеточные суммы G_{ppk} и G_{pqk} подсчитывались на ЭВМ, суммирование проводилось внутри сферы радиуса 30 Å (больший радиус суммирования не давал изменения в результатах). Решетки La_{2-x}Sr_xCuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ представлялись в виде суперпозиции четырех подрешеток: (La_{2-x}Sr_x)CuO(1)₂O(2)₂ и (Nd_{2-x}Ce_x)CuO(1)₂O(2)₂. Для La_{2-x}Sr_xCuO₄ положения атомов в элементарной ячейке и зависимости постоянных решеток от *x* взяты из [5]. Координаты атомов в элементарной ячейке и постоянные решетки (Nd_{2-x}Ce_x)CuO(1)₂O(2)₂ брались согласно [6]. В уравнении (1) атомам приписаны индексы: (La, Sr) и Nd — k = 1, Cu — k = 2, O(1) — k = 3, O(2) — k = 4.

Тензоры решеточных сумм U_{pq} от всех подрешеток La(Sr), Nd и Cu диагональны в кристаллографических осях, аксиально симметричны (это согласуется с экспериментальными данными), а их главные оси направлены по кристаллографической оси c.

Обсуждение экспериментальных результатов. Соединения La_{2-x}Sr_xCuO₄. Мессбауэровские спектры ⁶⁷Cu(⁶⁷Zn) и ⁶⁷Ga(⁶⁷Zn) позволяют определить постоянную квадрупольного взаимодействия $C = eQV_{zz}(1-\gamma)$ и параметр асимметрии $\eta = \frac{V_{xx} - V_{yy}}{V_{zz}}$ (здесь V_{xx} , V_{yy} ,

Рис. 1. Зависимость $p = \frac{V_{zz}(x)}{V_{zz}(x=0.1)}$ от *x* для узлов меди решетки La_{2-x}Sr_xCuO₄ для моделей (1)-(4), приведенных в тексте. Точками представлены данные по величинам $P = \frac{C(x)}{C(x=0.1)}$, полученные методом эмиссионной мессбауэровской спектроскопии на изотопе ⁶⁷Cu(⁶⁷Zn).

 V_{zz} — компоненты тензора кристаллического ГЭП, eQ — квадрупольный момент ядра ⁶⁷Zn, γ — коэффициент Штернхеймера), тогда как использование модели точечных зарядов позволяет определить лишь компоненты тензора кристаллического ГЭП V_{zz} и параметр асимметрии. Поскольку отсутствуют надежные данные по величинам eQ и γ , то для керамики La_{2-x}Sr_xCuO₄ мы воспользовались сравнением отношений: $P = \frac{C(x)}{C(x=0.1)}$ и $p = \frac{V_{zz}(x)}{V_{zz}(x=0.1)}$, так как указанные отношения не должны зависеть от коэффициента Штернхеймера и квадрупольного момента ⁶⁷Zn (здесь C(x), $V_{zz}(x)$ и C(x = 0.1), $V_{zz}(x = 0.1)$ обозначают соответствующие величины для керамики La_{2-x}Sr_xCuO₄ с текущим значением x и x = 0.1). На рис. 1 приведены зависимости p(x) для узлов меди, а на рис. 2 — для узлов лантана. Расчет V_{zz} был проведен для четырех моделей: 1) дырка находится в подрешетке меди; 2) дырка находится в подрешетке O(1); 3) дырка находится в подрешетке O(2);

Рис. 2. Зависимость $p = \frac{V_{zz}(x)}{V_{zz}(x=0.1)}$ от *x* для узлов лантана решетки $La_{2-x}Sr_xCuO_4$ для моделей (1)-(4), приведенных в тексте. Точками представлены данные по величинам $P = \frac{C(x)}{C(x=0.1)}$, полученные методом эмиссионной мессбауэровской спектроскопии на изотопе ⁶⁷Ga(⁶⁷Zn).

4) дырка равномерно распределена между подрешетками O (1) и O (2). Как видно из рис 1 и 2, уменьшение $p = \frac{V_{zz}(x)}{V_{zz}(x=0.1)}$ с ростом *x* для центров Zn²⁺ в узлах меди и лантана может быть количественно объяснено, если дырка преимущественно локализована в подрешетке атомов кислорода, находящихся в одной плоскости с атомами меди.

Соединение Nd_{1.85}Ce_{0.15}CuO₄. Существенно, что для зонда ⁶⁷Zn²⁺ в узлах меди соединения Nd_{1.85}Ce_{0.15}CuO₄ наблюдается отличное от нуля квадрупольное взаимодействие: $C = 15.5 \pm 0.5$ MHz, $\eta < 0.2$. Это находится в явном противоречии с данными по антиферромагнитному резонансу (AΦMP) и ядерному магнитному резонансу (ЯМР) на ядрах ⁶³Cu: спектры AΦMP для Nd_{2-x}Ce_xCuO₄ при x < 0.13 отвечают присутствию ядерного квадрупольного взаимодействия, тогда как для соединения Nd_{1.85}Ce_{0.15}CuO₄ в спектре ЯМР отсутствуют эффекты квадрупольного взаимодействия [7,8].

Расчет тензора ГЭП для узлов меди решетки Nd_{1.85}Ce_{0.15}CuO₄ был проведен для трех моделей, различающихся местом локализации компенсирующего электрона, появляющегося при замещении ионов Nd³⁺ на Ce⁴⁺: заряд равномерно распределен по узлам меди ($V_{zz} = 0.788 \text{ e/Å}^3$), заряд равномерно распределен по узлам O(1) ($V_{zz} = 0.768 \text{ e/Å}^3$), заряд равномерно рапределен по узлам O(2) ($V_{zz} = 0.824 \text{ e/Å}^3$). Из этих данных следует, что значение V_{zz} лишь слабо зависит от конкретной модели распределения заряда атомных центров по узлам решетки, причем все эти значения близки к величине V_{zz} для решетки Nd₂³⁺Cu²⁺O₄²⁻. Иными словами, исчезновение эффектов квадрупольного взаимодействия в спектрах ЯМР ⁶³Cu для керамики Nd_{1.85}Ce_{0.15}CuO₄ нельзя объяснить перестроением локального окружения атомов меди или локализацией компенсирующего электрона в подрешетках O(1) и O(2).

Очевидно, для такого объяснения следует учесть изменение электронной структуры центров меди при переходе от Nd₂CuO₄ к Nd_{1.85}Ce_{0.15}CuO₄. Действительно, для центров Cu²⁺ суммарный ГЭП на ядрах ⁶³Cu создается как ионами решетки (V_{zz}), так и валентными электронами иона меди (W_{zz}):

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R_0)W_{zz},$$
(2)

причем вклады от ионов решетки и валентных электронов атома-зонда различаются по знаку (здесь eQ — квадрупольный момент ядра 63 Cu; γ , R_0 — коэффициенты Штернхеймера иона Cu²⁺). Следовательно, уменьшение eQU_{zz} для центров 63 Cu при переходе от Nd₂CuO₄ к Nd_{1.85}Ge_{0.15}CuO₄ объясняется уменьшением вклада в ГЭП на ядрах 63 Cu от валентных электронов меди, т.е. следует предположить такое изменение электронной структуры меди, которое приведет к уменьшению валентного вклада в ГЭП на ядрах 63 Cu.

Мы провели количественную оценку изменения величины $eQ(1-R_0)W_{zz}$ для центров меди при переходе от Nd₂CuO₄ Nd_{1.85}Ce_{0.15}CuO₄ (использовалась модель, когда заряд равномерно распределен $Q = -0.211 \,\mathrm{b},$ по узлам меди, $\gamma = -25$ [9]). Для решетки Nd₂CuO₄ мы получили $eQ(1-\gamma)V_{zz} =$ ⁶³Cu поскольку $= -162.5 \,\mathrm{MHz},$ И спектров ΑΦΜΡ ИЗ керамики Nd₂CuO₄ получено $|eQU_{zz}| = 28.2 \text{ MHz}$ [7], то имеем $eQ(1-R_0)W_{zz} = +190.7$ MHz. Для решетки Nd_{1.85}Ce_{0.15}CuO₄

мы получили для $eQ(1-\gamma)V_{zz} = -162.1 \text{ MHz}$, и поскольку из спектров ЯМР ⁶³Cu для керамики Nd_{1.85}Ce_{0.15}CuO₄ получено $eQU_{zz} = 0.0 \text{ MHz}$ [8], то имеем для $eQ(1-R_0)W_{zz} = +162.1 \text{ MHz}$. Таким образом, переход от Nd₂CuO₄ к Nd_{1.85}Ce_{0.15}CuO₄ сопровождается уменьшением вклада в ГЭП на ядрах ⁶³Cu от валентных электронов на 28.6 MHz. С другой стороны, ожидаемое уменьшение валентного вклада из-за изменения электронной структуры меди от $3d^9$ (в Nd₂CuO₄) до $3d^{9.15}$ (в Nd_{1.85}Ce_{0.15}CuO₄) составляет 28.6 MHz (одна дырка на 3*d* оболочке меди приводит к $|eQ(1-R_0)W_{zz}| = 197 \text{ MHz}$ [9]). Это совпадает со значением 28.6 MHz, полученным из данных ЯМР ⁶³Cu.

Заключение. Методом эмиссионной мессбауэровской спектроскопии на изотопах ⁶⁷Cu(⁶⁷Zn) и ⁶⁷Ga(⁶⁷Zn) определены параметры тензора кристаллического ГЭП в катионных узлах решеток La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄. На основе сравнения экспериментальных и расчетных параметров тензора кристаллического ГЭП показано, что дырки, появляющиеся в результате замещения La³⁺ на Sr²⁺ в решетке La_{2-x}Sr_xCuO₄, локализованы преимущественно на атомах кислорода, находящихся в одной плоскости с атомами меди, тогда как электроны, появляющиеся в решетке Nd_{2-x}Ce_xCuO₄ за счет замещения ионов Nd³⁺ на Ce⁴⁺, локализованы в подрешетке меди. Эти результаты находятся в согласии с моделью авторов [2], предполагающей, что механизмом, ответственным за высокотемпературную сверхпроводимость, является взаимодействие электронов с двухатомными двухэлектронными центрами с отрицательной корреляционной энергией.

Список литературы

- [1] Копаев Ю.В. // УФН. 2002. Т. 172. С. 712.
- [2] Мицен К.В., Иваненко О.М. // УФН. 2004. Т. 174. С. 545.
- [3] Серегин П.П. Физические основы мессбауэровской спектроскопии. СПб.: Изд. СПбГПУ, 2002. 169 с.
- [4] Бондаревский С.И., Еремин В.В., Серегин Н.П. // Материалы V Всероссийской конференции "Фундаментальные исследования в технических университетах". СПб., 2001. С. 121.
- [5] Tarascon J.M., Greene L.H. // Science. 1987. V. 236. P. 1373.
- [6] Sadowski W., Hagemann H., Francois M., Bill H., Peter M., Walker E., Yvon K. // Physica C. 1990. V. 170. P. 103.

- [7] Yoshimari Y., Yasuoka H., Shimizu T., Takagi H., Tokura Y., Uchida Sh.-I. // J. Phys. Soc. Jap. 1990. V. 59. P. 36.
- [8] Zheng G., Kitaoka Y., Oda Y., Yasayama K. // J. Phys. Soc. Jap. 1989. V. 58. P. 1910.
- [9] Seregin P.P., Masterov V.F., Nasredinov F.S., Seregin N.P. // Phys. stat. sol. (b). 1997. V. 201. P. 269.