Рентгеноструктурные исследования гетероструктур на основе твердых растворов $AI_xGa_{1-x}As_yP_{1-y}$: Si

© П.В. Середин¹, В.Е. Терновая¹, А.В. Глотов¹, А.С. Леньшин¹, И.Н. Арсентьев², Д.А. Винокуров², И.С. Тарасов², Н. Leiste³, Т. Prutskij⁴

 ¹ Воронежский государственный университет, Воронеж, Россия
² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
³ Karlsruhe Nano Micro Facility, Eggenstein-Leopoldshafen, Germany
⁴ Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
E-mail: paul@phys.vsu.ru, arsentyev@mail.ioffe.ru

Методом высокоразрешающей рентгеновской дифракции и рентгеновского микроанализа изучен рост МОС-гидридных эпитаксиальных гетероструктур на основе тройных твердых растворов Al_xGa_{1-x}As, легированных высокими концентрациями атомов фосфора и кремния. Полученные эпитаксиальные пленки представляют собой пятикомпонентные твердые растворы (As_xGa_{1-x}As_yP_{1-y})_{1-z}Si_z.

Работа выполнена при поддержке гранта Президента РФ МК-736.2011.2, грантов РФФИ № 12-02-31003 и 12-02-33040, а также частично поддержана фондом Университета Нотр-Дам, США.

1. Введение

Гетеропереходы $Al_x Ga_{1-x} As/GaAs$ наиболее часто используют для изготовления квантово-размерных структур, поскольку эти материалы имеют достаточно близкие параметры решеток (рассогласование решеток ~ 0.15%) и потому позволяют создавать гетеропереходы с различными разрывами зон на границе [1,2]. Однако полное согласование по параметру в $Al_x Ga_{1-x} As/GaAs$ невозможно, так как размер атомов алюминия больше размера атомов галлия и мышьяка. Поэтому при высоких концентрациях алюминия (*x*) в металлической подрешетке даже в такой хорошо согласованной гетеропаре возникают внутренние напряжения, которые могут приводить к нежелательным эффектам.

Альтернативой системе $Al_x Ga_{1-x} As$ могут служить твердые растворы $Al_x Ga_{1-x} As_y P_{1-y}$. Так, в ряде работ [3,4] было предсказано, что за счет введение малых концентраций фосфора в слои $Al_x Ga_{1-x} As$ позволяет уменьшить суммарные механические напряжения в гетероструктуре, а также обеспечить лучший отвод тепла при высоких токах накачки и, как следствие, увеличить выходную мощность лазерного диода на основе $Al_x Ga_{1-x} As_y P_{1-y}$. Получение гетероструктур на основе многокомпонентных систем твердых растворов дает возможность создавать компоненты оптоэлектронных устройств с более корректными характеристиками [5,6], так как появляется возможность не только варьировать ширину запрещенной зоны, находясь в области прямозонных составов, но и в достаточно широких пределах составов согласовывать слои по периоду решетки и коэффициенту температурного расширения [7].

Поэтому целью настоящей работы является исследование структурных свойств многокомпонентных твердых растворов на основе $Al_xGa_{1-x}As$, легированных фосфором и кремнием.

2. Объекты и методы исследования

Технологические характеристики исследованных образцов приведены в табл. 1. Твердые растворы $Al_x Ga_{1-x} As_y P_{1-y}$ с толщиной ~ $2 \mu m$ были получены методом МОС-гидридной эпитаксии (эпитаксиальный рост из газовой фазы путем разложения металлорганических соединений (МОС)). В табл. 1 указан также поток легирующей примеси (которая состоит из 0.05 wt.% моносилана в водороде) в реактор. Концентрация носителей определялась с помощью эффекта Холла при

Таблица 1. Состав и условия роста гетероструктур $Al_xGa_{1-x}As_yP_{1-y}$: Si

Образец	Состав, <i>x</i> , <i>y</i> , at.%	<i>T</i> , °C	Поток SiH ₄ , cm ³ /min	Концентрация носителей, cm^{-3}
EM2350 EM2343 EM2356	GaAs $x \sim 40, y \sim 98-99$ $x \sim 50, y \sim 98-99$	800 800 800	200 300	$\begin{array}{c} 3.6\cdot 10^{16} \\ 8.19\cdot 10^{17} \\ 4.56\cdot 10^{17} \end{array}$

Карты обратного q-пространства, полученные вокруг узлов (400) и (511) гетероструктур Al_xGa_{1-x}As_yP_{1-y} : Si/GaAs(100).

комнатной температуре. Расчетное значение состава по фосфору (1 - y) составляло величину в районе 1-2 аt.%. Фосфор вводился в слой с целью предполагаемой компенсации объемных напряжений, которые вызываются слаборассогласованными по параметру решетки, но значительными по толщине $(2\mu m)$ слоями $Al_x Ga_{1-x} As$.

Для оценки структурного качества полученных гетероструктур и определения параметров решеток эпитаксиальных твердых растворов использовался рентгеновский дифрактометр Seifert 3003 HR с четырехкружным гониометром и излучением меди.

Концентрации элементов в твердом растворе были уточнены методом рентгеновского микроанализа с применением приставки к электронному микроскопу.

3. Результаты и их обсуждение

Используя приставку для рентгеновского микроанализа, мы уточнили концентрации элементов, входящих в состав исследуемых твердых растворов. Для анализа использовалось ускоряющее напряжение электронов 20 kV и исследовались участки образца ~750 × 750 μ m. Эффективная глубина микроанализа составила ~ 0.5 μ m. Данные рентгеновского микроанализа приведены в табл. 2. Как видно из полученных результатов, концентрации атомов фосфора и кремния в эпитаксиальной пленке гетероструктуры Al_xGa_{1-x}As_yP_{1-y}: Si/GaAs(100) достигают сотых долей атомного процента, что достаточно для образования

Образец	Состав эпитаксиальной пленки по данным микроанализа, at.%					
	$n_{\rm Al}$	n _{Ga}	n _{As}	n _P	$n_{\rm Si}$	
EM2350	-	50.00	50.00	-	-	
EM2343	16.37	33.06	50.00	0.53	0.04	
EM2356	21.02	28.05	50.27	0.66	0.09	

Таблица 2. Результаты рентгеновского микроанализа эпитаксиальных пленок

Таблица 3. Результаты высокоразрешающей рентгеновской дифрактометрии

	Узел обратной решетки					
Образец	(40	0)	(511)			
	l/d, nm	a^{\perp} , Å	l/d, nm	a [∥] ,Å		
EM2350	-		-			
EM2343	7.0705	5.6573	8.83836	5.6571		
EM2356	7.0721	5.6560	8.84066	5.6557		

твердых растворов в системе AlGaAsPSi, аналогично тому, что нам удалось наблюдать в случае роста высоколегированных кремнием твердых растворов $Al_x Ga_{1-x} As [8-10].$

Изучение особенностей структуры и роста гетероструктуры на основе многокомпонентного твердого раствора мы проводили с использованием картирования обратного пространства. Построение карт обратного пространства для симметричного и асимметричного узлов позволяет определять параметры кристаллической решетки в направлении и плоскости роста, состав твердого раствора, кристалличность и качество эпитаксиального слоя, отличать наклон эпитаксиальной пленки от дилатации. Нами были получены карты распределения интенсивности дифрагированного излучения в *q*-пространстве вокруг симметричного узла (400) и асимметричного узла (511), которые приведены на рисунке.

Как следует из полученных экспериментальных результатов (см. рисунок), эпитаксиальная пленка многокомпонентной гетероструктуры растет частично релаксированной, о чем свидетельствуют положение и форма узлов в обратном пространстве как для симметричного, так и для асимметричного отражения. Отклонение линии интерференционных максимумов на карте узла (400) от направления q_x свидетельствует о росте на подложках, имевших изначальное угловое рассогласование с направлением (100).

Компоненты параметра кристаллической решетки в направлении (a^{\perp}) и в плоскости (a^{\parallel}) роста легко определяются исходя из данных, полученных из анализа карт обратного *q*-пространства для симметричного (400)

и асимметричного (511) отражений. Величина a^{\perp} может быть определена на основе информации о симметричном (400) рефлексе: $q_{400}^{\text{epilayes}} = \left(\frac{4^2}{a^{\perp}}\right)^{1/2}$, в то время как значение a^{\parallel} задается следующим соотношением с учетом данных для асимметричного (511) рефлекса: $q_{511}^{\text{epilayer}} = \left(\frac{5^2}{a^{\parallel}}\right)^{1/2}$. Здесь q — координаты узлов в обратном пространстве.

Результаты высокоразрешающей рентгеновской дифракции приведены в табл. 3.

4. Заключение

Анализ данных, полученных методами рентгеновской дифракции и рентгеновского микроанализа, позволят сделать ряд заключений. Во-первых, легирование фосфором и кремнием тройных твердых растворов Al_xGa_{1-x}As, полученных методом МОС-гидридной эпитаксии с различными составами, с концентрациями $\sim 1-2$ ат.% по фосфору и долей атомного процента по кремнию, приводит к образованию пятикомпонентного твердого раствора AlGaAsPSi. Во-вторых, высокий уровень легирования кремнием должен был бы привести к более высокой концентрации носителей заряда в эпитаксиальной пленке в отличие от того, что показали холловские измерения ($\sim 10^{18}\,{\rm cm}^{-3}).$ Такие значительные отклонения от ожидаемых величин свидетельствуют об образовании глубоких уровней в твердом растворе, обусловленных сложными дефектами и комплексами, возникающими в результате образования твердых растворов с кремнием.

Изменение в структуре и стехиометрии в случае образования многокомпонентных твердых растворов на основе AlGaAsPSi должно проявиться в изменении оптических и энергетических характеристик материала, что служит поводом для продолжения начатой авторами работы.

Авторы благодарят KNMF (Карлсруэ, Германия) за предоставленный доступ к научному оборудованию.

Список литературы

- [1] Ж.И. Алфёров. ФТП, **32**, *1*, 3 (1998).
- [2] Молекулярно-лучевая эпитаксия и гетероструктуры / Пер. с англ. под ред. Л. Ченга, К. Плога. Мир, М. (1989) 584 с.
- [3] Д.А. Винокуров, В.А. Капитонов, А.В. Лютецкий, Д.Н Николаев, Н.А. Пихтин, С.О. Слипченко, А.Л. Станкевич, В.В. Шамахов, Л.С. Вавилова, И.С. Тарасов. ФТП 46, 10, 1344 (2012).
- [4] А.Ю. Андреев, А.Ю. Лешко, А.В. Лютецкий, А.А. Мармалюк, Т.А. Налет, А.А. Падалица, Н.А. Пихтин, Д.Р. Сабитов, В.А. Симаков, С.О. Слипченко, М.А. Хомылев, И.С. Тарасов. ФТП 40, 5, 628 (2006).

- [5] P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, I.S. Tarasov. Appl. Surf. Sci. 267, 181 (2013).
- [6] П.В. Середин, А.В. Глотов, Э.П. Домашевская, А.С. Леньшин, М.С. Смирнов, И.Н. Арсентьев, Д.А. Винокуров, А.Л. Станкевич, И.С. Тарасов. ФТП 46, 6, 739 (2012).
- [7] В.В. Кузнецов, Л.С. Лунин, В.И. Ратушный. Гетероструктуры на основе четверных и пятерных твердых растворов А^{III}В^V. Изд.-во СКНЦ ВШ, Ростов н/Д (2003). 376 с.
- [8] P.V. Seredin, A.V. Glotov, E.P. Domashevskaya, I.N. Arsentyev, D.A. Vinokurov, I.S. Tarasov. Physica B 405, 22, 4607 (2010).
- [9] П.В. Середин, А.В. Глотов, В.Е. Терновая, Э.П. Домашевская, И.Н. Арсентьев, Д.А. Винокуров, А.Л. Станкевич, И.С. Тарасов. ФТП 45, 4, 481 (2011).
- [10] П.В. Середин. Конденсированные среды и межфазные границы 12, 3, 258 (2010).